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a b s t r a c t

Impulsive systems are a very flexible class of systems that can be used to represent switched and
sampled-data systems. We propose to extend here the previously obtained results on deterministic
impulsive systems to the stochastic setting. The concepts of mean-square stability and dwell-times
are utilized in order to formulate relevant stability conditions for such systems. These conditions are
formulated as convex clock-dependent linear matrix inequality conditions that are applicable to robust
analysis and control design, and are verifiable using discretization or sum of squares techniques. Stability
conditions under various dwell-time conditions are obtained and non-conservatively turned into state-
feedback stabilization conditions. The results are finally applied to the analysis and control of stochastic
sampled-data systems. Several comparative examples demonstrate the accuracy and the tractability of
the approach.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Impulsive systems (Goebel, Sanfelice, & Teel, 2009; Michel,
Hou, & Liu, 2008) arise in many applications such as ecology
(Verriest & Pepe, 2009; Yu & Leung, 2006), epidemiology (Briat
& Verriest, 2009) and sampled-data systems/control (Briat, 2013;
Naghshtabrizi, Hespanha, & Teel, 2008; Ye, Michel, & Hou, 1998).
Lyapunov-based methods and dwell-time notions (Hespanha,
2004) can be used to establish various stability concepts and
conditions. Various concepts of dwell-time have been considered
over the past decades. Important examples are the minimum
dwell-time (Briat & Seuret, 2012a; Geromel & Colaneri, 2006;
Hespanha, 2004;Morse, 1996), the average dwell-time (Hespanha,
2004; Hespanha, Liberzon, & Teel, 2008), the persistent dwell-
time (Goebel et al., 2009; Hespanha, 2004; Zhang, Zhuang, Shi, &
Zhu, 2015), the maximum dwell-time (Briat, 2013; Briat & Seuret,
2012a,b), the ranged-dwell-time (Briat, 2013; Briat & Seuret,
2012a,b) and the mode-dependent dwell-time (Briat, 2015; Briat
& Seuret, 2013; Zhang et al., 2015). Notably, minimum dwell-
time stability conditions for linear impulsive systems have been
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obtained in Briat and Seuret (2012a) following the ideas developed
in Geromel and Colaneri (2006) in the context of switched
systems. It is shown in Briat and Seuret (2012a) that despite
a sufficient stability condition can be expressed as a tractable
linear matrix inequality problem, this type of conditions are only
applicable to linear time-invariant systems without uncertainties
and are impossible to convert into design conditions, even in
the simple case of state-feedback design (Briat, 2013; Briat &
Seuret, 2012a,b). These drawbacks motivated the consideration
of looped-functionals (Briat, 2016; Briat & Seuret, 2012a,b; Seuret,
2012), a particular class of indefinite functionals satisfying a
certain boundary condition, referred to as the looping-condition.
These functionals have the merit of leading to conditions that are
convex in the matrices of the system, hence easily applicable to
linear uncertain systems with time-varying uncertainties and to
nonlinear systems (Peet & Seuret, 2014). The price to pay for these
interesting properties is that the resulting conditions are infinite-
dimensional semidefinite programs, thatmay then be solved using
discretization techniques (Allerhand & Shaked, 2011; Gu, 2001) or
sum of squares programming (Briat, 2013; Parrilo, 2000). Due to
the presence of additional infinite-dimensional decision functions,
the complexity of the conditions may not scale very well with
the dimension of the system and/or the number of basis functions
used to express infinite-dimensional variables. Moreover, looped-
functionals are limited to stability analysis and are difficult to
consider for design purposes. To circumvent this problem, clock-
dependent conditions have been considered in Briat (2013, 2014,
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2015, 2016) where it is shown that these conditions possess
the same advantages than looped-functional conditions (i.e. the
possibility of considering nonlinear and uncertain linear systems)
together with the additional possibility of using them for design
purposes. Despite these frameworks have been recently shown
to be theoretically equivalent in Briat (2016), because the same
accuracy is attained with a lower computational cost, it is then
preferable to use clock-dependent stability conditions rather than
looped-functional-based ones.

We propose to address here the case of stochastic impulsive
systems where the continuous-time part consists of a linear
stochastic differential equation with state multiplicative noise
(Øksendal, 2003) and the discrete-time part is a stochastic
difference equation (Rodkina & Kelly, 2011). The impulses
arrival times are considered here as purely time-dependent and
deterministic. Stochastic hybrid systems have been extensively
studied in the literature; see e.g. Hou and Michel (2005) and
Teel, Subbaraman, and Sferlazza (2014) and references therein.
However, very few address the case where both parts of the
impulsive system are affected by noise (Chen, Wang, Tang, & Lu,
2008; Feng & Teo, 2010) and, when this is the case, average dwell-
time conditions, state-dependent impulse times or stochastically
arriving impulses (Antunes, Hespanha, & Silvestre, in press;
Hespanha & Teel, 2006) are most of the time only considered.

The main goal of the paper is therefore to develop stability
conditions in the same spirit as in Briat (2013, 2015, 2016)
and Briat and Seuret (2012a) where the deterministic case was
considered. To this aim, we consider the notion of dwell-times
and obtain a necessary and sufficient condition characterizing the
mean-square stability under constant dwell-time, and sufficient
conditions establishing the mean-square stability under ranged
and minimum dwell-time conditions. These conditions, albeit
stated in a more implicit way, naturally generalize those obtained
in the deterministic setting as they reduce to the deterministic
conditions when the noise-related terms are set to zero. Due to
the implicit structure of the conditions, they cannot be checked per
se. In order to overcome this difficulty, and in the same spirit as in
Briat (2013, 2015, 2016), lifted versions of the conditions expressed
as clock-dependent linear matrix inequalities are considered.
These conditions have the benefits of being convex in the
matrices of the system, a property that enables their use in
the contexts of uncertain systems and control design. Because
these conditions are infinite-dimensional, they cannot be checked
directly and need to be relaxed. Possible relaxation methods
include the approximation of infinite-dimensional variables using
a piecewise-linear approximation (Allerhand & Shaked, 2011; Gu,
2001) or the use of sum of squares programming (Briat, 2013;
Parrilo, 2000). It is emphasized that these relaxed conditions
are asymptotically exact in the sense that they can approximate
arbitrarily well the original conditions they have been derived
from. These conditions are shown to include those of Shaked
and Gershon (2014), which characterize the mean-square stability
stochastic linear switched systems, by exploiting the possibility
of representing switched systems as impulsive systems. The
approach is then non-conservatively extended to state-feedback
design, for which convex conditions are also obtained. Finally, the
analysis and control of aperiodic stochastic sampled-data systems
are performed using the proposed method by reformulating
the considered sampled-data system into an impulsive system.
It is worth mentioning here that sampled-data systems driven
by multiplicative noise do not seem to have been thoroughly
considered in the literature. This paper therefore fills this gap by
providing tractable conditions for both the analysis and the control
of such systems. Various comparative examples demonstrate the
accuracy and tractability of the approach.

Outline: The structure of the paper is as follows: in Section 2
preliminary definitions and results are given. Section 3 is devoted
to dwell-time stability analysis while Section 4 addresses dwell-
time stabilization. Sampled-data systems are finally treated in
Section 5. Examples are considered in the related sections.

Notations: The cone of symmetric (positive definite) matrices
of dimension n is denoted by Sn (Sn

≻0). The sets of integers and
whole numbers are denoted by N and N0, respectively. Given a
vector v, its 2-norm is defined as ∥v∥2 = (vTv)1/2. For a square
matrix A, we define He[A] := A + AT . The symbols ⊕ and ⊗ are
used for denoting the Kronecker sum and product, respectively.

2. Preliminaries

From now on, the following class of linear stochastic impulsive
system

dx(t) = [Ax(t)+ B1
cuc(t)]dt + Ecx(t)dW1(t)

+ B2
cuc(t)dW2(t), t ≠ tk

x(t+k ) = Jx(tk)+ B1
dud(k)+ Edx(tk)ν1(k)

+ B2
dud(k)ν2(k), k ∈ N

x(0) = x0

(1)

is considered where x, x0 ∈ Rn, uc ∈ Rmc and ud ∈ Rmd are the
state of the system, the initial condition, the continuous control
input and the discrete control input, respectively. The notation
x(t+) is a shorthand for lims↓t x(s), i.e. the trajectories are assumed
to be left-continuous. The sequence of impulse instants {tk}k∈N is
defined such that Tk := tk+1 − tk ≥ Tmin for some Tmin > 0. This
then implies that {tk}k∈N0 , t0 = 0, is increasing without bound.
The processes W1(t) and W2(t) are independent scalar Wiener
processes; i.e. for i = 1, 2, we have thatWi(0) = 0,Wi(t) is almost
surely everywhere continuous and has independent increments
Wi(t) − Wi(s), 0 ≤ s < t , that are normally distributed with
zero mean and variance t − s. The sequence {νi(k)}k∈N0 , i = 1, 2, is
sequence of independent identically distributed random variables
with zero mean and unit variance that are independent of x(tk) for
all k ∈ N. Let (Ω, F , (Ft,k)t≥0,k∈N0 , P) be a complete probability
space with σ -algebra F and natural (hybrid) filtration Ft,k (for
more details on hybrid filtrations see Teel, 2014). Let E[·] be the
expectation operator with respect to P.

Definition 1. We say that the system (1) with ud, uc ≡ 0 is mean-
square asymptotically stable if E[∥x(t)∥22] → 0 as t →∞.

Lemma 2. Let us consider a sequence {tk} for which 0 < Tmin ≤

Tk ≤ Tmax < ∞ for all k ∈ N0. Then, the system (1) with ud, uc ≡ 0
is mean-square asymptotically stable if and only if E[∥x(t+k )∥22] → 0
as k→∞.

Proof. It is clear that if the system is mean-square asymptotically
stable then E[∥x(t+k )∥22] → 0 as k → ∞. To prove the converse,

first note that, when ud, uc ≡ 0, dE[∥x(t)∥22]
dt = E[x(t)T (He[A] +

ET
c Ec)x(t)] ≤ βE[∥x(t)∥22] for all t ∈ (tk, tk+1) and for any

large enough β > 0. This then implies that E[∥x(tk + τ)∥22] ≤

eβTmaxE[∥x(t+k )∥22], which implies in turn that if E[∥x(t+k )∥22] → 0
as k → ∞, then supτ∈(0,Tk] E[∥x(tk + τ)∥22] → 0 as k → ∞. The
proof is complete. �

The above result remains valid as long as the impulses are
persistent, i.e. Tk < ∞. In the case where the impulses are not
persistent (i.e. there exists a k∗ ∈ N0 such that Tk < ∞ for
k = 0, . . . , k∗−1 and Tk∗ = ∞), then the asymptoticmean-square
stability of (1) eventually becomes equivalent to the asymptotic
mean-square stability of the continuous-time part of (1). Note also
that this result remains valid when state-dependent control inputs
are considered (e.g. state-, output- and dynamic-output feedback).
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Remark 3. By considering the change of variables z(t) = eαtx(t)
and applying the above result to z(t), we immediately get that
E[∥x(t)∥22] exponentially converges to 0 with rate 2α as t → ∞
if and only if E[∥x(t+k )∥22] geometrically converges to 0 with rate
e−2αTmin as k→∞.

3. Mean-square stability of stochastic linear impulsive systems

This section is devoted to the mean-square stability analysis
of the system (1) with no input (i.e. uc ≡ 0 and ud ≡ 0)
under constant, ranged and minimum dwell-time. Before stating
the main results of this section, it is convenient to introduce here
the following definition:

Definition 4. The fundamental solution of the continuous-time
part of the system (1) with uc ≡ 0 and ud ≡ 0 is denoted by
Φ : R≥0 → Rn×n where

dΦ(t) = AΦ(t)dt + EcΦ(t)dW1(t), t ≥ 0 (2)

where Φ(0) = I andW1(t) is defined as in (1).

Note that for every t ≥ 0, Φ(t) is an Ft,k-measurable random
variable. This fundamental solution therefore naturally generalizes
the deterministic one, which is readily retrieved by setting Ec = 0.
Associated with Φ(t), we define for any Z ∈ Sn the following
quadratic expression

ΞZ (s) := Φ(s)TZΦ(s), s ≥ 0. (3)

With these definitions in mind, we can now move forward to the
main results of the section.

3.1. Constant dwell-time

Let us first consider the case of constant dwell-time, that is, the
case where, for some T̄ > 0, we have that Tk = T̄ for all k ∈ N0.
We then have the following result:

Theorem 5. The following statements are equivalent:

(i) The system (1) with uc ≡ 0, ud ≡ 0 is mean-square asymptot-
ically stable under constant dwell-time, that is, for the sequence
of impulse times verifying Tk = T̄ , k ∈ N,

(ii) The matrix M(T̄ ) := exp(AT̄ )J defined with

A := A⊕ A+ Ec ⊗ Ec and J := J ⊗ J + Ed ⊗ Ed
is Schur stable.

(iii) There exists a matrix P ∈ Sn
≻0 such that

E[JTΞP(T̄ )J + ET
d ΞP(T̄ )Ed] − P ≺ 0 (4)

holds where ΞP(·) is defined in (3).
(iv) There exist a matrix-valued function S : [0, T̄ ] → Sn, S(0) ≻ 0,

and a scalar ε > 0 such that the conditions

− Ṡ(τ )+ AT S(τ )+ S(τ )A+ ET
c S(τ )Ec ≼ 0 (5)

and

JT S(T̄ )J − S(0)+ ET
d S(T̄ )Ed + εI ≼ 0 (6)

hold for all τ ∈ [0, T̄ ].
(v) There exist a matrix-valued function S : [0, T̄ ] → Sn, S(T̄ ) ≻ 0,

and a scalar ε > 0 such that the conditions

Ṡ(τ )+ AT S(τ )+ S(τ )A+ ET
c S(τ )Ec ≼ 0 (7)

and

JT S(0)J − S(T̄ )+ ET
d S(0)Ed + εI ≼ 0 (8)

hold for all τ ∈ [0, T̄ ].
Proof. Proof that (iii)⇒ (i). The proof of this implication follows
from the fact that by pre- and post-multiplying (4) by x(t+k )T and
x(t+k ), respectively, we immediately get thatE[∥x(t+k+1)∥

2
2,P ]−(1−

ε)E[∥x(t+k )∥22,P ] ≤ 0 for some ε ∈ (0, 1), for all k ∈ N0 and where
∥v∥22,P := vTPv. This implies that E[∥x(t+k )∥22,P ] → 0 as k → ∞,
proving then the mean-square asymptotic (exponential) stability
of the system (invoking Lemma 2 and Remark 3).

Proof that (i)⇒ (iii). The proof of this statement is based on the
explicit construction of amatrix P ∈ Sn

≻0 that verifies the condition
(4) whenever the system (1) is mean-square asymptotically
(exponentially) stable. To do this, let us define first the following
expression

Q̇ (t) = ATQ (t)+ Q (t)A+ ET
c Q (t)Ec, t ≠ tk

Q (t+k ) = JTQ (tk)J + ET
dQ (tk)Ed, k ∈ N

(9)

with Q0 = Q (0) = Y for any Y ∈ Sn
≻0. Note that the mean-square

exponential stability of the system is equivalent to the exponential
stability of the above matrix-valued linear differential equations
since E[x(t)TYx(t)] = xT0Q (t)x0. Let us define P∗ =


∞

k=0 Qk ≻ 0,
Qk := Q (t+k ) ≽ 0, Q0 = Y ≻ 0. Note that the latter sum is well-
defined because (9) is exponentially stable and also observe that

E

JTΞQk(T̄ )J + ET

d ΞQk(T̄ )Ed

= Qk+1. (10)

Substituting then P∗ in place of P in (4) and using (10) yield

∞
k=1

Qk −

∞
k=0

Qk = −Q0 = −Y ≺ 0, (11)

which proves the result.
Proof that (i)⇔ (ii). The mean-square asymptotic stability of

(1) is equivalent to the asymptotic stability of (9). Vectorizing this
matrix differential equation yields the system ż(t) = Az(t), t ≠ tk,
and z(t+k ) = Jz(tk), k ∈ N. Since the impulses arrive periodically,
then the stability of this system is equivalent to the stability of
the discretized system z(t+k+1) = exp(AT̄ )Jz(t+k ) and the result
follows.

Proof that (iv) ⇒ (iii). Integrating (5) with S(0) = P , for
simplicity, and using the definition of Φ , we get that S(τ ) ≽
E[Φ(τ )T S(0)Φ(τ )]. Substituting then this expression in (6) yields
the condition (4). The proof is complete.

Proof that (iii)⇒ (iv). Assume that (4) holds anddefine S∗(τ ) =
E[Φ(τ )T S(0)Φ(τ )], S(0) = P . This gives that−Ṡ∗(τ )+ AT S∗(τ )+
S(τ )A∗ + ET

c S(τ )∗Ec = 0, hence (5) holds. Substituting then the
value S∗(T̄ ) in the place of S(T̄ ) in (6) yields an expression that is
identical to (4). The condition (6) then readily follows.

Proof that (iv)⇔ (v). The equivalence follows from the change
of variables S(τ )← S(T̄ − τ). �

The conditions stated in the two last statements are referred
to as clock-dependent conditions as they explicitly depend on the
time τ (the clock value) elapsed since the last impulse. At each
event, the clock is reset to 0 (i.e. τ(t+k ) = 0) and then grows
continuously with slope 1 until the next impulse time. Clocks are
extensively considered in the analysis of hybrid systems and timed
automata; see e.g. Baier andKatoen (2008) andGoebel et al. (2009).
Clocks here are used to measure the current dwell-time value and
explicitly consider it in the conditions.

It is interesting to note that when the system without any
control input is deterministic, i.e. Ec = 0 and Ed = 0, then
the conditions stated in the previous result reduce to those of
Briat (2013), emphasizing then their higher degree of generality.
However, unlike in the deterministic setting, the condition (4)
is not directly tractable in this form due to the presence of
the expectation operator and random matrices that are difficult
to compute. The conditions of the other statements, although
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stated as infinite-dimensional LMI problems, can be turned into
finite-dimensional tractable conditions using several relaxation
techniques. This will be discussed in more details in Section 3.4.

3.2. Ranged dwell-time

Let us consider now the ranged dwell-time case, that is, the case
where Tk ∈ [Tmin, Tmax], 0 < Tmin ≤ Tmax <∞, for all k ∈ N0. We
then have the following result:

Theorem 6. The following statements are equivalent:

(i) There exists a matrix P ∈ Sn
≻0 such that

E[JTΞP(θ)J + ET
d ΞP(θ)Ed] − P ≺ 0 (12)

holds for all θ ∈ [Tmin, Tmax] where ΞP(·) is defined in (3).
(ii) There exist a matrix-valued function S : [0, Tmax] → Sn, S(0) ≻

0, and a scalar ε > 0 such that the conditions

− Ṡ(τ )+ AT S(τ )+ S(τ )A+ ET
c S(τ )Ec ≼ 0 (13)

and

JT S(θ)J − S(0)+ ET
d S(θ)Ed + εI ≼ 0 (14)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax].

Moreover, when one of the above equivalent statements holds, then
the system (1)with uc ≡ 0 and ud ≡ 0 ismean-square asymptotically
stable under ranged dwell-time (Tmin, Tmax), that is, for any sequence
of impulse times verifying Tk ∈ [Tmin, Tmax] for all k ∈ N.

Proof. The proof of this result follows from the same lines as the
proof of Theorem 5. �

3.3. Minimum dwell-time

We finally consider the minimum dwell-time case, that is, Tk ≥
T̄ for all k ∈ N0. We then have the following result:

Theorem 7. The following statements are equivalent:

(i) There exists a P ∈ Sn
≻0 such that the LMIs

E[JTΞP(θ)J + ET
d ΞP(θ)Ed] − P ≺ 0 (15)

and

ATP + PA+ ET
c PEc ≺ 0 (16)

hold for all θ ≥ T̄ where ΞP(·) is defined in (3).
(ii) There exists a P ∈ Sn

≻0 such that the LMIs

E[JTΞP(T̄ )J + ET
d ΞP(T̄ )Ed] − P ≺ 0 (17)

and

ATP + PA+ ET
c PEc ≺ 0 (18)

hold where ΞP(·) is defined in (3).
(iii) There exist a matrix-valued function S : R≥0 → Sn, S(T̄ ) ≻ 0,

S(T̄ + s) = S(T̄ ), s ≥ 0, and a scalar ε > 0 such that the
conditions

AT S(T̄ )+ S(T̄ )A+ ET
c S(T̄ )Ec ≺ 0, (19)

Ṡ(τ )+ AT S(τ )+ S(τ )A+ ET
c S(τ )Ec ≼ 0 (20)

and

JT S(0)J − S(T̄ )+ ET
d S(0)Ed + εI ≼ 0 (21)

hold for all τ ∈ [0, T̄ ].
Moreover, when one of the above equivalent statements holds, then
the system (1)with uc ≡ 0 and ud ≡ 0 ismean-square asymptotically
stable under minimum dwell-time T̄ , that is, for any sequence of
impulse times verifying Tk ≥ T̄ for all k ∈ N.

Proof. The proof that (ii) is equivalent to (iii) follows from
Theorem 5. The proof that (i) implies (ii) is also immediate. Let
us then focus on the reverse implication. Define first the function
fT̄ (θ) := E[Φ(T̄ + θ)TPΦ(T̄ + θ)]. Then, we have that

dfT̄
dθ
= E[Φ(T̄ + θ)T [He[PA] + ET

c PEc]Φ(T̄ + θ)]. (22)

Using now (18), we can conclude that dfT̄
dθ ≼ 0 for all θ ≥ 0. This,

in turn, implies that

E[JTΞP(T̄ + θ)J + ET
d ΞP(T̄ + θ)Ed]

≼ E[JTΞP(T̄ )J + ET
d ΞP(T̄ )Ed] (23)

for any sufficiently small θ ≥ 0. Noting finally that the above
inequality also holds when substituting T̄ by T̄ + µ for any µ ≥ 0
we get that

E[JTΞP(T̄ + θ ′)J + ET
d ΞP(T̄ + θ ′)Ed]

≼ E[JTΞP(T̄ )J + ET
d ΞP(T̄ )Ed] (24)

for all θ ′ := θ + µ ≥ 0. Using finally (17) yields the result. The
proof is complete. �

3.4. Computational aspects

The conditions of the theorems stated in the previous sections
are infinite-dimensional LMI feasibility problems which cannot
be verified directly. In what follows, we describe two relaxation
methods turning the original untractable conditions into tractable
ones. Note that even though we only provide these relaxations for
Theorem 5, (iv), similar ones can be obtained for the conditions of
Theorems 6 and 7.

3.4.1. Piecewise linear approach
The firstmethod, referred to as the piecewise linear approxima-

tion, proposes to impose a piecewise linear structure to the general
matrix-valued functions involved in the conditions; see e.g. Aller-
hand and Shaked (2011). The following result states the conditions
that approximate those of Theorem 5, (iv):

Proposition 8. Let N ∈ N. The following statements are equivalent:

(a) The conditions of Theorem 5, (iv) hold with the piecewise-linear
matrix-valued function S(τ ) given by

S(τ ) =
Si+1 − Si
T̄/N


τ −

iT̄
N


+ Si (25)

for τ ∈ [iT̄/N, (i+ 1)T̄/N], Si ∈ Sn, i = 0, . . . ,N − 1.
(b) There exist matrices Si ∈ Sn, i = 1, . . . ,N, S0 ≻ 0, and a scalar

ε > 0 such that the LMIs

−
Si+1 − Si
T̄/N

+ AT Si + SiA+ ET
c SiEc ≼ 0 (26)

−
Si+1 − Si
T̄/N

+ AT Si+1 + Si+1A+ ET
c Si+1Ec ≼ 0 (27)

and

JT SN J − S0 + ET
d SNEd + εI ≼ 0 (28)

hold for all i = 0, . . . ,N − 1.
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When one of the above statements holds, then the conditions
of Theorem 5, (iv) hold with the computed piecewise-linear matrix
S(τ ).

Proof. The proof follows from a convexity argument. By substitut-
ing the piecewise-linear expression of S(τ ) given by (25) into the
conditions (6) and (5) gives (28) and

−
Si+1 − Si
T̄/N

+ He[S(τ )A] + ET
c S(τ )Ec ≼ 0, (29)

respectively. Noting then that the above LMI is affine in τ , then for
each i = 0, . . . ,N − 1, it is necessary and sufficient to check the
above LMI at the vertices of the interval [iT̄/N, (i+1)T̄/N], that is,
at the values iT̄/N and (i + 1)T̄/N . The equivalence follows from
the losslessness of the manipulations. �

As the conditions stated in the above result are finite-
dimensional, they can be solved using standard SDP solvers such
as SeDuMi (Sturm, 2001). Note, moreover, than using similar
arguments as in Xiang (2015), we can prove that if the conditions
of Theorem 5, (iv) are feasible, then there exists an integer N∗ such
that the conditions of Proposition 8, (b) are feasible for all N ≥ N∗.

3.4.2. Sum of squares programs
Another possible relaxation relies on the use of sum of squares

programming (Papachristodoulou et al., 2013; Parrilo, 2000)where
we impose a polynomial structure with fixed degree to the
matrix-valued functions. The following result states conditions
that approximate those of Theorem 5, (iv) and that can be easily
checked using SOSTOOLS (Papachristodoulou et al., 2013) and the
semidefinite programming solver SeDuMi (Sturm, 2001):

Proposition 9. Let ε, ν, T̄ > 0 be given and assume that the
following sum of squares program

Find polynomial matrices S, Γ : R→ Sn such that
S(0)− νIn ≽ 0
Γ (τ ) is SOS
Ṡ(τ )− He[S(τ )A] − ET

c S(τ )Ec − Γ (τ )τ (T̄ − τ) is SOS

S(0)− JT S(T̄ )J − ET
d S(T̄ )Ed − εI ≽ 0

is feasible. Then the conditions of Theorem 5, (iv) hold with the
computed polynomial matrix S(τ ) and the system (1) is mean-square
asymptotically stable under constant dwell-time T̄ .

Regarding the conservatism, it can be shown using the same
arguments as in Briat (2015) that if the conditions of Theorem 5,
(iv) are feasible, then there exists a sufficiently large integer d
such that the above SOS program is feasible for some polynomials
S, Γ of degree at least 2d. Finally, it is important to stress that
SOS conditions are in general more tractable than those obtained
using the piecewise linear approximation that often require a large
discretization order; see Briat (2015, 2016).

3.5. Application to switched systems

Interestingly, the results developed in this section also applies
to linear stochastic switched systems. To emphasize this, let us
consider the stochastic switched system

dy(t) = Gσ(t)y(t)dt + Hσ(t)y(t)dW1(t), y(0) = y0 (30)

where y, y0 ∈ Rn and W1(t) are the state of the system, the
initial condition and the standard Wiener process, respectively.
The switching signal σ : R≥0 → {1, . . . ,N}, for some finiteN ∈ N,
is piecewise constant and describes the evolution of the mode of
the switched system. This system can be reformulated in the form
(1) with the matrices

A =
N

diag
k=1
[Gk], Ec =

N
diag
k=1

(Hk) and Jij = (eieTj )⊗ In, (31)

for all i, j = 1, . . . , µ, i ≠ j, where {ei}i=1,...,N is the standard basis
of RN . Note, however, that we have here multiple jump maps Jij
(actually reset maps here). It is immediate to see that the derived
stability conditions can be straightforwardly extended to address
this case, andwe get the following result adapted from Theorem 7:

Corollary 10. Assume that there exists a block-diagonal matrix-
valued function R = diagNi=1(Ri), Ri : [0, T̄ ] → Sn, R(T̄ ) ≻ 0, such
that the conditions

GT
i Ri(T̄ )+ Ri(T̄ )Gi + HT

i Ri(T̄ )Hi ≺ 0, (32)

Ṙi(τ )+ GT
i Ri(τ )+ Ri(τ )Gi + HT

i Ri(τ )Hi ≼ 0 (33)

and

Ri(0)− Rj(T̄ )+ εI ≼ 0 (34)

hold for all τ ∈ [0, T̄ ] and for all i, j = 1, . . . ,N, i ≠ j.
Then, the linear stochastic switched system (30) is mean-square

asymptotically stable under minimum dwell-time T̄ .

Proof. The proof is based on the reformulation (1)–(31). Noting
then the system is block-diagonal, then it is enough to choose a
matrix-valued function R(τ ) that is also block-diagonal. Substitut-
ing the model in the conditions of Theorem 7 and expanding them
yield the result. �

It is interesting to note that the above condition, although
formulated in a more compact form, include those obtained in
Shaked and Gershon (2014). If we indeed apply now the piecewise
linear approximation, thenwe get exactly the conditions of Shaked
and Gershon (2014, Theorem 1).

3.6. Examples

Wenowapply someof the previously developed results to some
academic examples.

Example 11. Let us consider the system (1) with the matrices
(Briat, 2013; Briat & Seuret, 2012a,b)

A =

−1 0
1 −2


, J =


2 1
1 3


, Ec = κ I2,

Ed = δI2,
(35)

B1
c = B2

c = B1
d = B2

d = 0 (i.e. no control input) for some scalars
κ, δ ≥ 0. We then choose several values for the parameters δ
and κ . The case (κ, δ) = (0, 0) corresponds to the deterministic
case of Briat (2013). For each of these values for the parameters,
we solve the sum of squares program of Proposition 9 for the
constant dwell-time and the minimum dwell-time cases with
matrix polynomials of degree 6. Note that to adapt Proposition 9
to the minimum dwell-time case, we simply have to add the
constraint He[AT S(T̄ )] + ET

c S(T̄ )Ec ≺ 0 to the program.
The numerical results are gathered in Tables 1 and 3 where

we can see that the deterministic results are indeed retrieved and
that, as expected, stability deteriorates as we increase the value of
the parameters κ and δ. It is also interesting to observe that, for
this example, the results for the constant and the minimum dwell-
times are quite close. Note, however, that this is far from being a
general rule. In order to estimate the conservatism of the method,
we consider the criterion of statement (ii) of Theorem 5 and we
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Table 1
Estimated smallest constant dwell-time T̄ for the system (1)–(35) for various values
for κ and δ using Proposition 9 and matrix polynomials S(τ ) and Γ (τ ) of degree 6.

κ/δ 0 0.6 1.2 1.8 2.4

0 1.1406 1.1568 1.2031 1.2734 1.3595
0.3 1.1918 1.2089 1.2578 1.3319 1.4225
0.6 1.3787 1.3992 1.4577 1.5458 1.6531
0.9 1.8774 1.9073 1.9920 2.1184 2.2702
1.2 3.9306 4.0011 4.1938 4.4765 4.8305

Table 2
Smallest constant dwell-time T̄ for the system (1)–(35) for various values for κ and
δ using Theorem 5, (ii).

κ/δ 0 0.6 1.2 1.8 2.4

0 1.1406 1.1568 1.2030 1.2732 1.3593
0.3 1.1918 1.2089 1.2577 1.3317 1.4223
0.6 1.3787 1.3992 1.4576 1.5456 1.6528
0.9 1.8773 1.9072 1.9918 2.1181 2.2700
1.2 3.9315 4.0005 4.1932 4.4752 4.8083

Table 3
Estimated minimum dwell-time T̄ for the system (1)–(35) for various values for κ

and δ using Proposition 9 and matrix polynomials S(τ ) and Γ (τ ) of degree 6.

κ/δ 0 0.6 1.2 1.8 2.4

0 1.1406 1.1568 1.2031 1.2734 1.3595
0.3 1.1918 1.2089 1.2578 1.3319 1.4225
0.6 1.3787 1.3992 1.4577 1.5458 1.6531
0.9 1.8774 1.9073 1.9920 2.1184 2.2703
1.2 3.9307 4.0012 4.1941 4.4776 4.8565

Table 4
Estimated ranged dwell-time Tmax for Tmin = 0.01 for the system (1)–(36)
for various values for κ and δ using an adaptation of Proposition 9 and matrix
polynomials of degree 6.

κ/δ 0 0.2 0.4 0.6 0.8

0 0.4620 0.4126 0.2971 0.1647 0.0388
0.75 0.3891 0.3474 0.2502 0.1387 0.0327
1.5 0.2640 0.2357 0.1698 0.0941 0.0221
2.75 0.1312 0.1171 0.0844 0.0467 0.0110
3 0.1154 0.1031 0.0742 0.0411 0.0064

Table 5
Estimated ranged dwell-time Tmax for Tmin = 0.01 for the system (1)–(36) for
various values for κ and δ using the gridded quadratic stability condition.

κ/δ 0 0.2 0.4 0.6 0.8

0 0.4620 0.4126 0.2971 0.1647 0.0388
0.75 0.3891 0.3474 0.2502 0.1387 0.0327
1.5 0.2640 0.2357 0.1698 0.0941 0.0221
2.75 0.1312 0.1171 0.0844 0.0467 0.0110
3 0.1155 0.1031 0.0742 0.0411 0.0411

find the results summarized in Table 2 where we can see that the
proposedmethod is very accurate for this system. This then implies
that the estimates of the minimum dwell-time are also equally
accurate.

Example 12. We now consider the system (1) with the matrices
(Briat, 2013; Briat & Seuret, 2012a,b)

A =


1 3
−1 2


, J =


0.5 0
0 0.5


, Ec = κ I2,

Ed = δI2,
(36)

B1
c = B2

c = B1
d = B2

d = 0 (i.e. no control input) for some scalars
κ, δ ≥ 0. For δ = κ = 0, this system is known (see Briat & Seuret,
2012a) to be stable with maximum dwell-time Tmax ≈ 0.4620,
i.e. for all Tk ≤ 0.4620. Using the ranged dwell-time result with
Tmin = 0.01, we get the results summarized in Table 4 where the
maximal value for Tmax is computed using a variation of the SOS
program in Proposition 9 and a bisection approach. In order to eval-
uate the conservatism, we compare these results with the maxi-
mumvalue for θ forwhich the LMIs P ≻ 0 andM(θ)TPM(θ)−P ≺
0 are feasible for all θ ∈ [0.01, Tmax] (quadratic stability condition).
Since this problem is not directly solvable (note that sumof squares
methods do not apply because of the presence of exponential
terms), the interval [0.01, Tmax] is gridded with 201 points and the
LMIs are checked on these points only. This leads to the results of
Table 5wherewe can observe that slightly larger values for Tmax are
found. However, this is at the price of amuch higher computational
cost (see Briat, 2015, 2016) and gridding imprecision. Note also
that the exponential conditions are only valid in the time-invariant
case,while the conditions of Theorem6 aremore flexible and apply
also to systems affected by time-varying uncertainties/parameters.

4. Mean-square stabilization of stochastic linear impulsive
systems

We extend here the results obtained in the previous section
to address the stabilization problem by state-feedback. We first
consider stabilization under ranged dwell-time and then derive
stabilization conditions under minimum dwell-time.

4.1. Stabilization under ranged dwell-time

Weconsider in this section the following class of state-feedback
control law

uc(tk + τ) = Kc(τ )x(tk + τ), τ ∈ (0, Tk]
ud(k) = Kdx(tk)

(37)

where Tk ∈ [Tmin, Tmax], k ∈ N0. The continuous matrix-valued
function Kc : [0, Tmax] → Rmc×n and the matrix Kd ∈ Rmd×n

involved above are the gains of the controller to be determined.
We then have the following result:

Theorem 13. The following statements are equivalent:

(a) There exists a matrix P ∈ Sn
≻0 such that the LMI

E[(J + B1
dKd)

TΨ1(θ)(J + B1
dKd)] − P

+ ET
d Ψ1(θ)Ed + K T

d (B2
d)

TΨ1(θ)B2
dKd ≺ 0 (38)

holds for all θ ∈ [Tmin, Tmax] where Ψ1(θ) := Φ1(θ)TPΦ1(θ)
and

dΦ1(τ ) = (A+ B1
cKc(τ ))Φ1(τ )dτ

+ (EcdW1(τ )+ B2
cKc(τ )dW2(τ ))Φ1(τ ) (39)

defined for τ ∈ [0, Tmax] and Φ1(0) = I .
(b) There existmatrix-valued functions S̃ : [0, Tmax] → Sn, S̃(0) ≻ 0,

Uc : [0, Tmax] → Rmc×n, amatrix Ud ∈ Rmd×n and a scalar ε > 0
such that the conditions Λ(τ ) ⋆ ⋆

Ec S̃(τ ) −S̃(τ ) 0
B2
cUc(τ ) ⋆ −S̃(τ )

 ≼ 0 (40)

and
−S̃(0)+ εI ⋆ ⋆ ⋆

J S̃(0)+ B1
dUd −S̃(θ) ⋆ ⋆

EdS̃(0) 0 −S̃(θ) ⋆

B2
dUd 0 0 −S̃(θ)

 ≼ 0 (41)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax] where Λ(τ ) =
˙̃S(τ )+ He[AS̃(τ )+ B1

cUc(τ )].
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Moreover, when one of the above statements holds, then the closed-
loop system (1)–(37) is mean-square asymptotically stable under
ranged dwell-time (Tmin, Tmax) and suitable controller gains can be
computed from the conditions of statement (b) using the expressions

Kc(τ ) = Uc(τ )S̃(τ )−1 and Kd = UdS̃(0)−1. (42)

Proof. A Schur complement on the inequality (40) and a
congruence transformation with respect to S(τ ) = S̃(τ )−1 yields
the inequality

− S(τ )+ He[S(τ )(A+ B1
cKc(τ ))] + ET

c S(τ )Ec

+ Kc(τ )TB2T
c S(τ )B2

cKc(τ ) ≼ 0. (43)

Similarly, (41) can be shown to be equivalent to

− S(0)+ (J + B1
dUd)

T S(θ)(J + B1
dUd)

+ ET
d S(θ)Ed + K T

d B
2T
d S(τ )B2

dKd ≺ 0. (44)

Invoking now Theorem 6, Statement (b) proves the equivalence
between the statements of the result. �

4.2. Stabilization under minimum dwell-time

Let us consider now the minimum dwell-time case. Since the
dwell-time can be arbitrarily large in this setting, we propose to
use the following state-feedback control law

uc(tk + τ) =


Kc(τ )x(tk + τ), τ ∈ (0, T̄ ]
Kc(T̄ )x(tk + τ), τ ∈ (T̄ , Tk]

ud(k) = Kdx(tk)
(45)

where Kc : [0, T̄ ] → Rmc×n and Kd ∈ Rmd×n are the gains of the
controllers that have to be determined.We then have the following
result:

Theorem 14. The following statements are equivalent:

(a) There exists a matrix P ∈ Sn
≻0 such that the LMIs

E[(J + B1
dKd)

TΨ2(T̄ )(J + B1
dKd)] − P

+ ET
d Ψ2(T̄ )Ed + K T

d (B2
d)

TΨ2(T̄ )B2
dKd ≺ 0 (46)

and

ATP + PA+ ET
c PEc ≺ 0 (47)

hold where Ψ2(θ) = Φ2(θ)TPΦ2(θ) and

dΦ2(τ ) = (A+ B1
cKc(τ ))Φ2(τ )dτ

+ (EcdW1(t)+ B2
cKc(τ )dW2(t))Φ2(τ ) (48)

defined for τ ≥ 0 and Φ2(0) = I .
(b) There exist matrix-valued functions S̃ : [0, Tmax] → Sn, S̃(T̄ ) ≻

0, Uc : [0, Tmax] → Rmc×n, a matrix Ud ∈ Rmd×n and a scalar
ε > 0 such that the conditions
Λ(τ ) Ec S̃(τ )+ B2

cU(τ )

⋆ −S̃(τ )


≼ 0 (49)

He[AS̃(T̄ )+ B1
cUc(T̄ )] Ec S̃(T̄ )+ B2

cU(T̄ )

⋆ −S̃(T̄ )


≺ 0 (50)

and−S̃(0)+ εI J S̃(T̄ )+ B1
dUd EdS̃(T̄ )+ B2

dUd

⋆ −S̃(T̄ ) 0
⋆ ⋆ −S̃(T̄ )

 ≼ 0 (51)

hold for all τ ∈ [0, T̄ ]whereΛ(τ ) =
˙̃S(τ )+He[AS̃(τ )+B1

cU(τ )].
Fig. 1. Evolution of (E[∥x(t)∥22])
1/2 along the trajectories of the system (1)–(53)

subject to two randomly generated impulse time sequences with minimum dwell-
time T̄ = 0.1.

Moreover, when this is the case, the closed-loop system (1)–(37) is
mean-square asymptotically stable under minimum dwell-time T̄ and
suitable controller gains can be computed from the conditions of the
statement (b) using the expressions

Kc(τ ) = Uc(τ )S̃(τ )−1 and Kd = UdS̃(0)−1. (52)

Proof. The proof is based on the same manipulations as in the
proof of Theorem13,with the difference that Theorem7 is invoked
in place of Theorem 6. �

4.3. Example

Let us consider the system (1) with the matrices

A =

1 1
1 −2


, B1

c =


4
0


, B2

c =


1
0


,

J =

3 1
1 2


,

Ec =

1 0
1 2


, Ed = 0.2


1 0
1 −1


, B1

d =


1
0


,

B2
d =


0
0.1


.

(53)

Using then Theorem 14 with minimum dwell-time T̄ = 0.1 and
polynomials of order 1 and 2, we obtain the controller gains Kd =
−3.9165 −2.9751


and

Kc(τ ) =
1

den(τ )


−0.0299τ 2

− 0.2251τ + 0.1605
0.0045τ 2

− 0.0167τ + 0.1881

T

where den(τ ) = 0.0291τ 2
+ 0.5439τ − 0.1255. Choosing then

x0 = (2,−2), we then obtain the trajectory for (E[∥x(t)∥22])
1/2

depicted in Fig. 1 where we can observe the convergence to 0,
emphasizing the mean-square asymptotic stability of the closed-
loop system.

5. Application to aperiodic sampled-data systems

As an application example, we utilize the ranged dwell-time
result in order to derive a stabilization condition for linear
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aperiodic stochastic sampled-data systems represented in the
impulsive form:

dxsd(t) = Āxsd(t)dt +
2

i=1

Ēixsd(t)dWi(t)

xsd(t+k ) = (J0 + B̄Kd)xsd(tk)

(54)

where

Ā =

Asd Bsd
0 0


, Ē1 =


Esd 0
0 0


,

Ē2 =

0 αBsd
0 0


J0 =


I 0
0 0


, B =


0
I


, Kd =


K 1
d K 2

d


(55)

and xsd := (x1sd, x
2
sd) where x1sd ∈ Rn is the state of the continuous-

time system, x2sd ∈ Rm is the piecewise-constant state modeling
the zero-order hold. As before W1,W2 ∈ R are two independent
zero mean Wiener processes. The parameter α > 0 is here to
scale the amplitude of the noise on the control channel. The gain
of the controller, denoted by Kd, is given by Kd =


K 1
d K 2

d


where

K 1
d ∈ Rm×n and K 2

d ∈ Rm×m.
We then have the following result:

Theorem 15. The following statements are equivalent:

(a) There exists a matrix P ∈ Sn
≻0 such that the LMI

E[(J0 + B̄Kd)
TΨsd(θ)(J0 + B̄Kd)] − P ≺ 0 (56)

holds for all θ ∈ [Tmin, Tmax] where Ψsd(θ) := Φsd(θ)TPΦsd(θ)
and

dΦsd(τ ) = ĀΦsd(τ )dτ + Ē1Φsd(θ)dW1(t)

+ Ē2Φsd(θ)dW2(t), Φsd(0) = I (57)

defined for s ∈ [0, Tmax].
(b) There exist matrix-valued functions S̃ : [0, Tmax] → Sn+m, a

matrix Ud ∈ Rm×(n+m) and a scalar ε > 0 such that the conditions
S̃(0) ≻ 0 and ˙̃S(τ )+ He[AS̃(τ )] S̃(τ )ET

1 S̃(τ )ET
2

⋆ −S̃(τ ) 0
⋆ ⋆ −S̃(τ )

 ≼ 0 (58)


−S̃(0)+ εI (J S̃(0)+ BdUd)

T

⋆ −S̃(θ)


≼ 0 (59)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax].

Moreover, when one of the above statements holds, then the (closed-
loop) sampled-data system (54) is mean-square asymptotically stable
under ranged dwell-time Tk ∈ [Tmin, Tmax] and a suitable controller
gain can be computed from the expression Kd = UdS̃(0)−1.

We now illustrate the above result by a simple example:

Example 16. Let us consider the sampled-data system (54) with
α = 0.1 and the matrices

Asd =


0 1
0 −1


, Bsd =


0
1


and Esd =


0 0
0 0.1


. (60)

Applying then Theorem 15with polynomials of order 2, we get the
results gathered in Table 6. Simulation results are depicted in Fig. 2
where we can see that the designed controllers effectively render
the closed-loop system mean-square asymptotically stable under
the considered ranged dwell-time conditions. We can also observe
that the controllers give rise to similar performance in terms of
Table 6
Various controller gains for the sampled-data system (54)–(60) obtained with
Theorem 15 using polynomials of order 2.

Tmin Tmax Kd

0.001
0.1 (−0.4069,−0.1734,−0.0045)
0.5 (−0.4421,−0.2137,−0.0215)
1 (−0.3410,−0.1332, 0.0036)

1
5 (−0.1977,−0.1931, 0.0014)
10 (−0.1053,−0.1061, 0.0011)
20 (−0.0583,−0.0559,−0.0003)

Fig. 2. Evolution of E[∥x(t)∥22]
1/2 (top) and E[∥u(t)∥22]

1/2 (bottom) along the
trajectories of the system (54)–(60) with the controllers designed for Tmin = 0.001
and several values for Tmax . The sequences of impulse times satisfying the ranged
dwell-time condition are randomly generated.

the rate of convergence of E[∥x(t)∥22] to 0 despite having different
time-scales for the control input update.

6. Conclusion

Dwell-time stability and stabilization conditions have been
obtained for stochastic impulsive systems and expressed as
infinite-dimensional LMI problems that can be solved using
discretization or sumof squares techniques. The approachhas been
shown to include switched systems and sampled-data systems as
particular cases, making then the approach quite general.

Possible future works include the design of dynamic output
feedback controllers, observer and filters. The approach can also be
extended to performance characterization using induced-norms
such as the induced L2-norm and the induced L2–L∞-norm. Other
possible extensions would concern other concepts of dwell-times
(Zhang et al., 2015) and the consideration of controller/mode
mismatch due to decision delays (Zhang & Xiang, 2016).
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