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a b s t r a c t

Stability analysis and control of linear impulsive systems is addressed in a hybrid framework, through
the use of continuous-time time-varying discontinuous Lyapunov functions. Necessary and sufficient
conditions for stability of impulsive systems with periodic impulses are first provided in order to set up
the main ideas. Extensions to the stability of aperiodic systems under minimum, maximum and ranged
dwell-times are then derived. By exploiting further the particular structure of the stability conditions,
the results are non-conservatively extended to quadratic stability analysis of linear uncertain impulsive
systems. These stability criteria are, in turn, losslessly extended to stabilization using a particular, yet
broad enough, class of state-feedback controllers, providing then a convex solution to the open problemof
robust dwell-time stabilization of impulsive systems using hybrid stability criteria. Relying finally on the
representability of sampled-data systems as impulsive systems, the problems of robust stability analysis
and robust stabilization of periodic and aperiodic uncertain sampled-data systems are straightforwardly
solved using the same ideas. Several examples are discussed in order to show the effectiveness and
reduced complexity of the proposed approach.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Impulsive systems (Bainov & Simeonov, 1989; Briat & Seuret,
2012a; Goebel, Sanfelice, & Teel, 2009; Hespanha, Liberzon, & Teel,
2008; Michel, Hou, & Liu, 2008) are an important class of hybrid
systems exhibiting both continuous- and discrete-time dynamics.
The discrete-time part, which is only active at certain time instants
tk, k ∈ N, introduces discontinuities in the overall trajectories of
the system. Analyzing them usually relies on the use of Lyapunov
functions and input-to-state stability/nonlinear small-gain ideas
(Dashkovskiy, Kosmykov,Mironchenko, &Naujok, 2012;Hespanha
et al., 2008; Nešić, Teel, & Zaccarian, 2011), Lyapunov function-
als (Naghshtabrizi, Hespanha, & Teel, 2008) or, more recently,
another type of functionals, verifying certain boundary condi-
tions, referred to as looped-functionals (Briat & Seuret, 2012a,
2013). When the impulses occur periodically, the system can be
viewed as an LTI discrete-time system which can be studied using
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discrete-time Lyapunov theory. When impulses arrive at irregular
times (aperiodic regime), the discrete-time system becomes time-
varying and specific stability concepts should then be considered.
The notion of dwell-time, i.e. the time between two successive dis-
crete events defined as Tk := tk+1 − tk, has been introduced early
in the literature (Hespanha & Morse, 1999; Morse, 1996) and has
been proven to be very useful for the analysis of switched systems.
In the case of impulsive systems, dwell-timesmore specifically cor-
respond to the times between two consecutive impulses. Impul-
sive systems can therefore be identified through the properties of
the sequence of impulse instants {tk}, and a relevant stability no-
tion can therefore be considered. When the sequence of impulsive
instants is arbitrary, i.e. Tk > 0, we talk about stability under ar-
bitrary dwell-time, whereas stability under ranged dwell-time is
defined for sequences verifying Tk ∈ [Tmin, Tmax]. Stability under
minimum andmaximum dwell-time address the cases Tk ≥ T̄ and
Tk ≤ T̄ , respectively.

Stability under dwell-time constraints can be analyzed in sev-
eral different ways. Lyapunov approaches based on a separate
worst-case convergence analysis (i.e. α-stability) of the distinct
parts of the impulsive system (Hespanha et al., 2008; Hespanha
& Morse, 1999) are very convenient to work with when deal-
ing with uncertainties, or when control design is the main goal,
principally due to their convexity properties. They may, however,
be unable to yield very accurate estimates for dwell-times (Briat
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& Seuret, 2013; Geromel & Colaneri, 2006) since they may not
capture the possible interplay between the continuous- and
discrete-parts. Discrete-time approaches, however, exhibit much
less conservatism, but are, in the present state-of-the-art, diffi-
cult to adapt to uncertain systems and aperiodic systems or to
extend to control design, mainly due to a lack of convexity. Hy-
brid stability conditions (also referred to as ‘‘mixed stability condi-
tions’’ in the following) consisting of coupled continuous-time and
discrete-time criteria have been shown to yield more accurate es-
timates for minimum dwell-time for both linear switched systems
(Chesi, Colaneri, Geromel, Middleton, & Shorten, 2012; Geromel
& Colaneri, 2006) and linear impulsive systems (Briat & Seuret,
2012a,b). Themain difficultieswhen considering hybrid conditions
lie in the nonconvex dependence on the system matrices (due to
the presence of a discrete-time condition), that complicates the
extensions to both time-invariant and time-varying uncertain sys-
tems, and to control design.

Periodic and aperiodic sampled-data systems, arising for in-
stance in digital control (Chen & Francis, 1995) or networked
control systems (Hespanha, Naghshtabrizi, & Xu, 2007), are
intimately connected to impulsive systems since any sampled-
data system can be equivalently represented as an impul-
sive system. Several approaches have been developed to
analyze sampled-data systems: discrete-time approaches (Cloost-
erman et al., 2010; Donkers, Heemels, vand de Wouw, & Hetel,
2011; Fujioka, 2009a; Oishi & Fujioka, 2010), input-delay ap-
proaches (Fridman, 2010; Fridman, Seuret, & Richard, 2004; Teel,
Nešić, & Kokotović, 1998), robust analysis techniques (Fujioka,
2009b; Kao & Fujioka, 2013; Mirkin, 2007), impulsive/hybrid
systems formulation (Briat & Seuret, 2012a,b; Dai, Hu, Teel, &
Zaccarian, 2010; Sivashankar & Khargonekar, 1994; Sun, Nag-
pal, & Khargonekar, 1991), and the use of looped-functionals ei-
ther considering directly the sampled-data system formulation
(Seuret, 2012) or the impulsive system formulation (Briat & Seuret,
2012a,b). These approaches have exactly the same benefits and
drawbacks as in the case of impulsive systems.

The rationale for using mixed stability criteria for analyzing
switched and impulsive systems (Briat & Seuret, 2012a,b, 2013;
Chesi et al., 2012; Geromel & Colaneri, 2006) lies in the reduced
(possibly vanishing) conservatism (Wirth, 2005) of the conditions,
opposed to continuous-time results based on rates of convergence
of Lyapunov functions, see e.g. (Hespanha et al., 2008; Hespanha
& Morse, 1999; Morse, 1996). Hybrid stability criteria are there-
fore important to consider in order guarantee accuracy, but should
be characterized in such a way that robustness analysis and control
design remain possible. A first step towards such a result has been
made very recently by using looped-functionals (Briat & Seuret,
2012a,b, 2013), a specific type of functionals defined on a lifted
state–space which encode a discrete-time condition as a convex
condition in the system matrices, a very suitable feature for ro-
bust stability analysis. However, the structure of the conditions
prevents the derivation of tractable design criteria due to the pres-
ence of multiple decision matrices, inexorably leading to high
computational cost and nonconvex terms in the synthesis condi-
tions. The proposed approach, based on time-varying continuous-
time discontinuous Lyapunov functions, combines features of the
continuous-time and hybrid approaches by leading to necessary
and sufficient stability and stabilization conditions which are con-
vex in the systemmatrices and in the decision variables (Lyapunov
and controller variables), togetherwith a lower complexity than by
using looped-functionals.

The contribution of this paper lies on different levels. First of all,
necessary and sufficient conditions for stability of impulsive sys-
tems with periodic impulses are derived in Section 2 from the use
of a specific discontinuous Lyapunov function. The advantage of the
use of such Lyapunov functions lies in a reduced computational
complexity over the use of looped-functionals, while accuracy is
mostly preserved. The periodic case is then extended to cope with
aperiodicity in impulse arrival times (i.e.minimum,maximum, and
ranged dwell-times) and time-varying parametric uncertainties.
Necessary and sufficient results for discrete-time quadratic sta-
bility are provided, again with a reduced computational complex-
ity. By relying on non-conservative algebraic manipulations, these
results are further exactly adapted in Section 3 to quadratic (ro-
bust) stabilization using a particular class of state-feedback con-
trollers. More concisely, quadratic stabilization with prescribed
minimum, maximum or ranged dwell-times can be expressed as
convex optimization problems. The approach is fully generic and
can be applied to any linear impulsive system. Exploiting finally, in
Section 4, the representability of sampled-data systems as impul-
sive systems, the results are then adapted to sampled-data sys-
tems. Convex necessary and sufficient conditions for quadratic
stabilization of aperiodic uncertain time-varying sampled-data
systems are obtained. Examples and comparisons with several ex-
isting results are discussed in the related sections.

Notations. The set of n× n (positive definite) symmetric matrices
is denoted by (Sn

≻0) Sn. Given two symmetric matrices A, B, the
inequality A ≻ (≽)B means that A − B is positive (semi)definite.
Given a square real matrix A, the notation Sym(A) stands for the
sum A + AT .

2. Stability analysis of periodic and aperiodic impulsive sys-
tems

In this section, linear impulsive systems of the form

ẋ(t) = Ax(t), t ≠ tk
x(t) = Jx−(t), t = tk

(1)

are considered where x ∈ Rn is the state of the system and x−(tk)
stands for the left-limit of x(s) at s = tk, i.e. x−(tk) = lims↑tk x(s).
The system matrices A and J may be uncertain time-varying, this
will be explicitly mentioned when this is the case. The sequence
of impulse instants {tk}k∈N, tk > 0, is assumed to have positive in-
crements Tk := tk+1 − tk > ϵ > 0 that are bounded away from
0. Defined as such, the sequence {tk}k∈N does not admit any accu-
mulation point (we exclude then any Zeno motion) and grows un-
bounded. Note that the sequence of impulse instants may or may
not depend on the state of the system. In the following, we will
make no distinction between these two cases since impulse se-
quences will be solely characterized in terms of dwell-time con-
straints.

2.1. Impulsive systems with periodic impulses

The case of periodic impulses is addressed first in order to
introduce the main ideas.

Theorem 2.1 (Periodic Impulses). Let us consider the system (1)with
periodic impulses, i.e. Tk = T̄ , k ∈ N. Then, the following statements
are equivalent:

(a) The impulsive system (1) with T̄ -periodic impulses is asymptoti-
cally stable.

(b) The discrete-time transition matrix Ψ (T̄ ) := eAT̄ J is Schur.2

2 A matrix is Schur (or Schur stable) if all its eigenvalues lie in the unit disk.
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(c) There exists a matrix P ∈ Sn
≻0 such that the LMI

JT eA
T T̄PeAT̄ J − P ≺ 0 (2)

holds or, equivalently, the quadratic form V (x) = xTPx is a
discrete-time Lyapunov function for the LTI discrete-time system
zk+1 = eAT̄ Jzk.

(d) There exist a differentiable matrix function R : [0, T̄ ] → Sn,
R(0) ≻ 0, and a scalar ε > 0 such that the LMIs

ATR(τ ) + R(τ )A + Ṙ(τ ) ≼ 0 (3)

and

JTR(0)J − R(T̄ ) + εI ≼ 0 (4)

hold for all τ ∈ [0, T̄ ].
(e) There exist a differentiable matrix function S : [0, T̄ ] → Sn,

S(T̄ ) ≻ 0, and a scalar ε > 0 such that the LMIs

AT S(τ ) + S(τ )A − Ṡ(τ ) ≼ 0 (5)

and

JT S(T̄ )J − S(0) + εI ≼ 0 (6)

hold for all τ ∈ [0, T̄ ].

Proof. The proof that (a) ⇔ (b) ⇔ (c) can be found in Briat and
Seuret (2012a).

Proof of (d) ⇒ (c). Assume (d) holds. Integrating (3) over [0, T̄ ],
pre- and post-multiplying by JT and J implies that the LMIs

JT eA
T T̄R(T̄ )eAT̄ J − JTR(0)J ≼ 0 (7)

holds. From (4), we have that R(T̄ ) ≻ 0 and JTR(0)J ≼ R(T̄ ) − εI .
Substituting then for JTR(0)J in (7) yields

JT eA
T T̄R(T̄ )eAT̄ J − R(T̄ ) ≼ −εI (8)

which therefore implies that (2) holds with P = R(T̄ ) ≻ 0. The
proof is complete.

Proof of (c) ⇒ (d). The proof is structured as follows: first, we
prove that (3) admits solutions regardless of the stability of the
system, showing that this condition can be assumed to be satisfied
without loss of generality. The second part of the proof consists of
combining statement (c) with the solution set of (3) to prove that
(4) holds.

Assume (2) holds with P = R(T̄ ) ≻ 0 and some Y ≻ 0 as

JT eA
T T̄R(T̄ )eAT̄ J − R(T̄ ) = −Y . (9)

Since eAT̄ J is Schur, then the abovematrix equation admits a unique
solution R(T̄ ) ≻ 0 (Gahinet, Laub, Kenney, & Hewer, 1990). The set
of all solutions R(τ ) to (3) can be defined as the set of solutions of
the matrix equality

ATR(τ ) + R(τ )A + Ṙ(τ ) = −W (τ ), W (τ ) ≽ 0 (10)

where W (τ ) is a continuous function w.l.o.g. Given W (τ ), the
unique solution to (10) is given by

R(τ ) = e−AT τR(0)e−Aτ
−

 τ

0
e−AT (τ−s)W (s)e−A(τ−s)ds,

τ ∈ [0, T̄ ] (11)

where R(T̄ ) ≻ 0 is defined by (9). We have proved that (10) can be
considered as fulfilled, independently of the stability of the system,
which concludes the first part of the proof. The second part of the
proof consists of deriving first, from expression (11), the equation

eA
T T̄R(T̄ )eAT̄ = −W̃ (T̄ ) + R(0) (12)
where W̃ (T̄ ) =
 T̄
0 eA

T sW (s)eAsds ≽ 0. The above equality implies
that R(0) ≻ W̃ (T̄ ) ≽ 0 since R(T̄ ) ≻ 0. Consequently, we have
that R(τ ) ≻ 0 for all τ ∈ [0, T̄ ] since W̃ (τ ) ≽ 0 is a nondecreasing
function, i.e. W̃ (τ ) ≼ W̃ (ζ ) for any 0 ≤ τ ≤ ζ ≤ T̄ . Substituting,
finally, the left-hand side of (12) in (9),we get that JTR(0)J−R(T̄ ) =

−Y + JT W̃ (T̄ )J . Since W (s) and Y ≻ 0 are arbitrary, then we can
choose them such that this then implies that −Y + JT W̃ (T̄ )J ≺ 0
and thus that (4) holds. The proof is complete.

Proof of (d) ⇔ (e). Assume (d) holds for some R(τ ), it is immedi-
ate to see that R(τ ) := S(T̄ − τ) solves (5) and (6). Reverting the
argument proves the equivalence. ♦

The conditions stated in statement (d) can be understood as a
non-increase condition, over each interval [tk, tk+1), of the time-
varying discontinuous Lyapunov function Vd(x, τ ) = xT Q̂ (τ )x
where Q̂ (tk + τ) = Q (τ ), Q (τ ) ∈ Sn, τ ∈ [0, Tk), Q (0) ≻ 0, Q
differentiable, and that verifies the boundary condition

JTQ (0)J − Q−(T̄ ) + εI ≼ 0 (13)

where Q−(T̄ ) = lims↑T̄ {Q (s)}.
A peculiarity of the proposed approach is that thematrices R(τ )

and S(τ ) do not need to be imposed to be positive definite over
their domain of definition. Positivity over their domain is directly
implied from the positivity ofR(0) and S(T̄ ), and the LMI conditions
in statements (d) and (e). These conditions, all together, indeed
imply that R(T̄ ) is also positive definite, and thus, by virtue of
Eq. (11) that R(τ ) is positive definite on its domain. The case of
S(τ ) is symmetric.

There are several advantages of the conditions (3)–(4) of state-
ment (d) (or conditions (5)–(6) of statement (e)) over condition (2)
of statement (c). First of all, the conditions are convex in the sys-
tem matrices A and J , allowing then for an immediate extension
to the uncertain case. Further, the presence of a single decision
matrix variable in the conditions tends to suggest the possibility
of deriving tractable synthesis conditions. The compensation for
these interesting convexity properties is the consideration of in-
finite dimensional feasibility problems, which may be very hard
to solve. Several methods can be applied to make the feasibility
problems finite-dimensional. A first one is to discretize the interval
[0, T̄ ] and express thematrix R(τ ) as a piecewise linear function on
each subintervals; see e.g. Allerhand and Shaked (2013). A second
one relies on sum of squares programming (Parrilo, 2000) which
provides an efficient framework for solving such problems by re-
stricting the matrix functions R(τ ) and S(τ ) to polynomial matrix
functions. It is also very important to point out that the computa-
tion complexity is improved by the fact that R(τ ) does not have to
be specifically imposed to be positive definite over [0, T̄ ] since this
is a direct consequence of the conditions R(0) ≻ 0, (3) and (4) of
the theorem.

Still in a computational perspective, it seems necessary to com-
pare the computational complexity of the conditions of Theo-
rem2.1 to the complexity of the looped-functional-based results of
Briat and Seuret (2012b) addressing the same problem. Assuming
polynomial matrices R(τ ), S(τ ) ∈ Sn of degree dR in Theorem 2.1
and a polynomialmatrix Z(τ ) ∈ S3n of degree dZ in Briat and Seuret
(2012b), we have the following count of the number of variables:

Ncurrent(dR) = (dR + 1)
n(n + 1)

2

Nlooped(dZ ) =
n(n + 1)

2
+ (dZ + 1)

3n(3n + 1)
2

(14)

for the current approach and the looped-functional approach of
Briat and Seuret (2012b), respectively. We can immediately see
that the number of variables for the looped-functional approach
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grows much faster with the system dimension n and the degree of
the polynomial than with the proposed approach. It seems, how-
ever, important to stress that the expressions (14) should be un-
derstood as lower bounds on the actual computational complexity
since additional variables are usually needed, e.g. to incorporate
constraints. It will be illustrated in the examples that the proposed
approach is able to obtain results that are very close to those ob-
tained using looped-functionals with a much lower computational
complexity, even if dR is usually larger than dZ . A comparison will
also be made with a discretization-based approach.

2.2. Aperiodic impulsive systems

Let us now consider that the system (1) is aperiodic, i.e. im-
pulses arrive at irregular times. To this aim, we consider a ranged-
dwell time constraint on the sequence of impulse instants, i.e.
Tk ∈ [Tmin, Tmax]. We then have the following generalization of
Theorem 2.1:

Theorem 2.2 (Ranged Dwell-Time). Let us consider the system (1)
with a ranged dwell-time constraint, i.e. Tk ∈ [Tmin, Tmax], k ∈ N.
Then, the following statements are equivalent:

(a) There exists a matrix P ∈ Sn
≻0 such that the LMI

JT eA
T θPeAθ J − P ≺ 0 (15)

holds for all θ ∈ [Tmin, Tmax].
(b) There exist a differentiable matrix function R : [0, Tmax] → Sn,

R(0) ≻ 0, and a scalar ε > 0 such that the LMIs

ATR(τ ) + R(τ )A + Ṙ(τ ) ≼ 0 (16)

and

JTR(0)J − R(θ) + εI ≼ 0 (17)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax].

Moreover, when one of the above statements holds, then the aperiodic
impulsive system (1) with ranged dwell-time Tk ∈ [Tmin, Tmax] is
asymptotically stable.

Proof. The proof follows the same lines as the one of
Theorem 2.1. ♦

It is important to stress that, in the result above, the computational
complexity of the second statement is much lower than if we had
used conditions (3)–(4) of Theorem 2.1, statement (e). This follows
from the fact that in statement (e), wewould have required S(θ) ≻

0 for all θ ∈ [0, Tmax], which is obviously much more complex
than simply imposing R(0) ≻ 0 in the present case. To pursue the
computational complexity analysis, we note that the conditions of
Theorem 2.2 are more expensive than those of Theorem 2.1 due to
the presence of the additional parameter θ ∈ [0, Tmax] in LMI (17).

The next result concerns stability of an impulsive system under
minimum dwell-time, i.e. Tk ≥ T̄ for all k ∈ N. This stability
concept has been extensively studied in the past, see. e.g. Hespanha
et al. (2008) and Briat and Seuret (2012a,b) and references therein.

Theorem 2.3 (Minimum Dwell-Time). Let us consider the system
(1) with a minimum dwell-time constraint, i.e. Tk ≥ T̄ , k ∈ N. Then,
the following statements are equivalent:

(a) There exists a matrix P ∈ Sn
≻0 such that the LMIs

ATP + PA ≺ 0 (18)

and

JT eA
T T̄PeAT̄ J − P ≺ 0 (19)

hold.
(b) There exist a differentiable matrix function R : [0, T̄ ] → Sn,
R(0) ≻ 0, and a scalar ε > 0 such that the LMIs

ATR(0) + R(0)A ≺ 0 (20)

ATR(τ ) + R(τ )A + Ṙ(τ ) ≼ 0 (21)

and

JTR(0)J − R(T̄ ) + εI ≼ 0 (22)

hold for all τ ∈ [0, T̄ ].
(c) There exist a differentiable matrix function S : [0, T̄ ] → Sn,

S(T̄ ) ≻ 0, and a scalar ε > 0 such that the LMIs

AT S(T̄ ) + S(T̄ )A ≺ 0 (23)

AT S(τ ) + S(τ )A − Ṡ(τ ) ≼ 0 (24)

and

JT S(T̄ )J − S(0) + εI ≼ 0 (25)

hold for all τ ∈ [0, T̄ ].

Moreover, when one of the above statements holds, the impulsive
system (1) is asymptotically stable under minimum dwell-time T̄ ,
i.e. for any sequence {tk}k∈N such that Tk ≥ T̄ .

Proof. The proof that (a) ⇔ (b) ⇔ (c) follows from Theorem 2.1.
The proof that (a) implies stability with minimum dwell-time can
be found in Briat and Seuret (2012a,b). ♦

It is important to note that the above theorem straightforwardly
extends to time-varying systems depending explicitly on time
and/or time-varying parameters by simply using the fundamental-
solution and the state-transition matrices instead of exponentials.
The variational argument used to prove the equivalence between
statements (a) and (b) also remains valid.

Remark 1. Similarly as in Briat and Seuret (2012a,b), a maximum
dwell-time result can be obtained by simply reverting the
inequality sign in the LMIs (18), (20) and (23). In such a case,
the concluding statement changes to: ‘‘The aperiodic impulsive
system (1) is asymptotically stable under maximum dwell-time T̄ ,
i.e. for any sequence {tk}k∈N such that Tk ∈ [ϵ, T̄ ] for any ϵ > 0’’.

2.3. Examples

The conditions stated in Theorems 2.1–2.3 are infinite-
dimensional feasibility problems. In order to enforce them ef-
ficiently, the sum-of-squares programming package SOSTOOLS
(Prajna, Papachristodoulou, Seiler, & Parrilo, 2004) and the
semidefinite programming solver SeDuMi (Sturm, 2001) are used.
Suitable matrix functions R or S such that the conditions of Theo-
rems 2.1–2.3 are feasible are then searchedwithin the set ofmatrix
polynomials of fixed (and chosen) degree, dR say. In this case, the
matrix function R(τ ) is chosen as R(τ ) =

dR
i=0 Riτ

i, Ri ∈ Sn,
and, in this regard, its derivative is simply given by the polynomial
Ṙ(τ ) =

dR
i=1 iRiτ

i−1 which can be easily inserted in the SOS condi-
tions. In the examples below, the number of variables is identified
as the number of variables declared by SOSTOOLS when defining
the matrix decision variables, i.e. the Lyapunov matrix P(τ ) and
the SOS variables Mi(τ )’s for constraints incorporation. Simula-
tions are performed on an i7-2620M@ 2.70 Ghz with 4 GB of RAM.

Note that even though the results obtained in the following
examples are compared with the results of Briat and Seuret
(2012a,b), othermethods such as the one described in Dashkovskiy
and Mironchenko (2013) can be applied as well.
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Table 1
Estimates of the admissible range of dwell-times for the aperiodic system of
Example 1.

dR Tmin Tmax

Theorem 2.2, (b)
2 0.1834 0.4998
4 0.1824 0.5768
6 0.1824 0.5776

Periodic case – 0.1824 0.5776

Table 2
Estimates of the minimum dwell-time for Example 2.

dR Tmin

Theorem 2.3, (c)
2 1.1883
4 1.1408
6 1.1406

Theorem 2.3, (b) – 1.1406
Periodic case – 1.1406

Example 1 (Ranged Dwell-Time). Let us consider the system (1)
with matrices (Briat & Seuret, 2012a,b)

A =


−1 0.1
0 1.2


, J =


1.2 0
0 0.5


. (26)

By computing the eigenvalues of eAT̄ J , this system can be easily
shown to be stable with T̄ -periodic impulses whenever T̄ ∈

[0.1824, 0.5776]. Using the ranged dwell-time stability conditions
(16)–(17) of Theorem 2.2, the same bounds are retrieved with
a matrix polynomial R of order 6, showing then the tightness
of the 8 obtained numerical values in the aperiodic case; see
Table 1. For comparison purposes, the same numerical result is
obtained in Briat and Seuret (2012b) using a looped-functional
of degree dZ = 3. SOSTOOLS, however, declares 149 variables
for the current approach, whereas for looped-functionals 2806
variables are involved. The execution time is about 1 s whereas it
is approximately 15 s for the looped functional approach of Briat
and Seuret (2012b).

Example 2 (Minimum Dwell-Time). Let us consider the system (1)
with matrices (Briat & Seuret, 2012a,b)

A =


−1 0
1 −2


, J =


2 1
1 3


. (27)

Since A is Hurwitz, the minimum dwell-time result stated in The-
orem 2.3 can be applied. Using conditions (18)–(19), we get the
minimum dwell-time T̄ = 1.1405. The same value for the min-
imum dwell-time is obtained using conditions (20)–(22) with a
polynomial matrix R of order 6; see Table 2. Using the looped-
functional approach of Briat and Seuret (2012b), this numerical re-
sult is obtained by using polynomials of degree dZ = 3 (i.e. 412
variables), whereas the current approach involving polynomials of
order 6 only requires 85 variables. The execution time is about 0.5 s
whereas it is approximately of 1.5 s for the looped functional ap-
proach of Briat and Seuret (2012b). For comparison, we also con-
sider a discretization scheme (Allerhand & Shaked, 2013) where
R(τ ) is expressed as a piecewise linear function on [0, T̄ ] which
is subdivided in N subintervals. For a fair comparison, we select
N = 28, which gives 87 variables, and we get 1.1919 as the com-
puted boundon theminimumdwell-time. The computation time is
1.2 s. Thus we can see that, in this example, the SOS approach per-
forms better with a comparable number of variables. Note, more-
over, that the number of constraints involved in the discretization
is larger than the one considered in the SOS program as well.
2.4. A robustness result

All the previous results can be robustified to account for para-
metric uncertainties affecting A and J . To this aim, let us consider
now that the matrices of the system (1) are uncertain, possibly
time-varying, and belonging to the following polytopes

A ∈ A := co {A1, . . . , AN} and
J ∈ J := co {J1, . . . , JN}

(28)

where co{·} is the convex-hull operator. Before stating themain re-
sults, it is necessary to introduce the state-transition matrix Φ(·),
which corresponds to system (1)–(28), as

dΦ(s)
ds

=


N
i=1

λi(s)Ai


Φ(s), Φ(0) = I (29)

where λ(s) ∈ ΛN :=

ξ ∈ RN

≥0 : ∥ξ∥1 = 1

is sufficiently regu-

lar so that solutions to (29) are well-defined, e.g. in a Carathéodory
sense. Associated to this transition matrix, we define the set ΦT̄ as

ΦT̄ :=

Φ(T̄ ) : Φ(s)solves (29), λ(s) ∈ ΛN , s ∈ [0, T̄ ]


. (30)

This set corresponds to all possible transition matrices Φ(T̄ ) ob-
tained for all possible trajectories of the uncertain parameters λ.
Note that the set ΦT̄ is strongly nonconvex and is difficult to com-
pute exactly. This intricate structure illustrates the inherent diffi-
culty in considering uncertain systems in a discrete-time setting.
By reformulating the discrete-time conditions in terms of condi-
tions (3) and (4), this difficulty is circumvented and discrete-time
stability results can be efficiently robustified. For conciseness, only
the robustification of Theorem 2.1 will be discussed. Robust ver-
sions of Theorems 2.2 and 2.3 can be obtained in the same way.

Theorem 2.4 (Periodic Impulses). Let us consider the uncertain
(time-varying) impulsive system (1)–(28) with T̄ -periodic impulses,
i.e. Tk = T̄ , k ∈ N. Then, the following statements are equivalent:
(a) The uncertain (time-varying) impulsive system (1)–(28) with T̄ -

periodic impulses is quadratically stable.3
(b) There exists a matrix P ∈ Sn

≻0 such that the LMI

JTΨ TPΨ J − P ≺ 0 (31)
holds for all (Ψ , J) ∈ ΦT̄ × J. Equivalently, the quadratic
form V (x) = xTPx is a discrete-time Lyapunov function for the
uncertain time-varying discrete-time system zk+1 = ΨkJzk, for all
(Ψk, J) ∈ ΦT̄ × J.

(c) There exist a differentiable matrix function R : [0, T̄ ] → Sn,
R(0) ≻ 0, and a scalar ε > 0 such that the LMIs

AT
i R(τ ) + R(τ )Ai + Ṙ(τ ) ≼ 0 (32)

and

JTi R(0)Ji − R(T̄ ) + εI ≼ 0 (33)

hold for all τ ∈ [0, T̄ ] and all i = 1, . . . ,N.
(d) There exist a differentiable matrix function S : [0, T̄ ] → Sn,

S(T̄ ) ≻ 0, and a scalar ε > 0 such that the LMIs

AT
i S(τ ) + S(τ )Ai − Ṡ(τ ) ≼ 0 (34)

and

JTi S(T̄ )Ji − S(0) + εI ≼ 0 (35)

hold for all τ ∈ [0, T̄ ] and all i = 1, . . . ,N.
Proof. The proof simply follows from some convexity
arguments. ♦

3 Quadratic stability of a linear uncertain system is defined here through the
existence of a common quadratic Lyapunov function (i.e. independent of λ in the
present case) for the uncertain system; see e.g. Khargonekar, Petersen, and Zhou
(2001).
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3. Stabilization of periodic and aperiodic impulsive systems

It is now shown that, unlike using looped-functionals, the cur-
rent framework can be efficiently and accurately used for control
design. To this aim, let us consider the impulsive system

ẋ(t) = Ax(t) + Bcuc(t), t ≠ tk
x(t) = Jx−(t) + Bdud(t), t = tk

(36)

where uc ∈ Rmc and ud ∈ Rmd are the control inputs. The following
class of state-feedback control laws is considered:
uc(tk + τ) = Kc(τ )x(tk + τ), τ ∈ [0, Tk),

ud(tk) = Kdx−(tk)
(37)

where the continuous control law is time-varying and the discrete
one is time-invariant. The purpose of this section is therefore to
provide tractable conditions for finding suitable Kc : [0, T̄ ) →

Rmc×n and Kd ∈ Rmd×n such that the closed-loop system (36)–(37)
is asymptotically stable.

3.1. Periodic impulses case

The next result gives constructive conditions for designing a
control law of the form (37) for impulsive systems with T̄ -periodic
impulses, i.e. Tk = T̄ . Suitable controller gains can, indeed, be
directly extracted from the solutions of the sum-of-squares feasi-
bility problems stated in the following result:

Theorem 3.1 (Periodic Impulses). The following statements are
equivalent:
(a) There exists a control law (37) such that the impulsive system

(36)–(37) with T̄ -periodic impulses is asymptotically stable.
(b) There exist a differentiable matrix function S : [0, T̄ ] → Sn,

S(0) ≻ 0, a matrix function Uc : [0, T̄ ] → Rmc×n, a matrix
Ud ∈ Rmd×n and a scalar ε > 0 such that the LMIs

Sym[AS(τ ) + BcUc(τ )] + Ṡ(τ ) ≼ 0 (38)

and
−S(T̄ ) + εI JS(0) + BdUd

⋆ −S(0)


≼ 0 (39)

hold for all τ ∈ [0, T̄ ]. In such a case, suitable matrices for the
control law (37) are given by the expressions

Kc(τ ) = Uc(τ )S(τ )−1, Kd = UdS(0)−1. (40)

Proof. What has to be proven is the exactness of the stabilization
conditions (38)–(39). By performing a congruence transformation
on (38) with respect to S̃ := S−1 we get that

Sym

S̃(τ )(A + BcKc(τ ))


−

˙̃S(τ ) ≼ 0 (41)

where we used the facts that Kc(τ ) = Uc(τ )S̃(τ ) and S̃(τ )Ṡ(τ )S̃(τ )

= −
˙̃S(τ ). Looking now at the LMI (38), we can easily see that it is

equivalent to
I

(J + BdKd)
T

T 
−S(T̄ ) 0

0 S(0)

 
I

(J + BdKd)
T


≺ 0. (42)

Noting then that the central matrix has n positive and n negative
eigenvalues, and that the outer-factors are of rank n, then the du-
alization lemma (Scherer, 2000) applies, andwe get the equivalent
LMI

(J + BdKd)
T S̃(T̄ )(J + BdKd) − S̃(0) ≺ 0. (43)

Noting finally that the conditions (41)–(43) are identical to (5)–(6)
proves the result. Equivalence follows from the losslessness of the
manipulations. ♦
Remark 2. Note that if the conditions of statement (d) of The-
orem 2.1 had been used, we would have obtained a controller
matrix depending on the dwell-time Tk, which may not be
implementable. This fact emphasizes the importance of statement
(e) of Theorem 2.1.

3.2. Stabilization under minimum dwell-time

The stabilization under minimum dwell-time is slightly more
complicated since the controller gain Kc(τ ) in (37) must remain
bounded as τ → ∞. In the best case, it should converge to a finite
value. A way for solving this difficulty is to consider the following
controller gain

Kc(τ ) =


K̃c(τ ) if τ ∈ [0, T̄ )

K̃c(T̄ ) if τ ∈ [T̄ , Tk)
(44)

where Tk ≥ T̄ , k ∈ N and K̃c(τ ) is some matrix function to
be determined. This specific structure for the control law, as it
will be emphasized later, arises naturally from the structure of
the minimum dwell-time stability conditions and will be shown
to be non-restrictive. Again the matrices of the controller can be
extracted from the solutions of the feasibility problem stated in the
following result:

Theorem 3.2 (Minimum Dwell-Time). The following statements are
equivalent:

(a) There exist matrices P ∈ Sn
≻0, Kd ∈ Rmd×n and a matrix function

K̃c : [0, T̄ ] → Rmc×n such that the matrix inequalities

(A + Bc K̃c(T̄ ))TP + P(A + Bc K̃c(T̄ )) ≺ 0 (45)

and

(J + BdKd)
TΦ(T̄ )TPΦ(T̄ )(J + BdKd) − P ≺ 0 (46)

hold, where Φ : [0, ∞) → Rn×n is the transition matrix defined
as
d
dτ

Φ(τ ) = [A + BcKc(τ )]Φ(τ ), τ ≥ 0

Φ(0) = I.
(47)

(b) There exist a differentiable matrix function S : [0, T̄ ] → Sn,
S(T̄ ) ≻ 0, a matrix function Uc : [0, T̄ ] → Rmc×n, a matrix
Ud ∈ Rmd×n and a scalar ε > 0 such that the LMIs

Sym[AS(T̄ ) + BcUc(T̄ )] ≺ 0, (48)

Sym[AS(τ ) + BcUc(τ )] + Ṡ(τ ) ≼ 0 (49)

and
−S(0) + εI JS(T̄ ) + BdUd

⋆ −S(T̄ )


≼ 0 (50)

hold for all τ ∈ [0, T̄ ]. In this case, suitable controller gains are
retrieved using

K̃c(τ ) = Uc(τ )S(τ )−1, Kd = UdS(T̄ )−1. (51)

Moreover, in such a case, the closed-loop system (36)–(44) is asymp-
totically stable with minimum dwell-time T̄ .

Proof. The first thing that has to be proven is the fact that
statement (a) implies that the closed-loop system is stable with
minimum dwell-time T̄ . The equivalence between (a) and (b)
follows from Theorem 3.1 and the changes of variables Uc(τ ) =

K̃c(τ )S(τ ) and Ud = KdS(T̄ ). Let us prove then that statement (a)
implies that the closed-loop system is stablewithminimumdwell-
time T̄ . Two possible scenarios: (1) either the impulses arrive in
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finite-time, i.e. T̄ ≤ Tk < ∞; or (2) impulses stop at some point.
Stability of the second case is straightforward from condition (48).
Let us then focus on the first case. We need to show there that the
Lyapunov function V (x) = xTPx evaluated at times tk and along
the trajectories of the closed-loop system (36)–(44) is pointwise
decreasing and remains bounded between impulses. It is indeed
pointwise decreasing whenever the LMI

(J + BdKd)
TΦ(θ)TPΦ(θ)(J + BdKd) − P ≺ 0 (52)

holds for all finite θ ∈ [T̄ , ∞). By using the fact that Φ(T̄ + δ) =

e(A+BcKc (T̄ ))δΦ(T̄ ) for all δ ≥ 0 and the same arguments as in
the proof of Theorem 2.3, we have that conditions (45) and (46)
imply that (52) holds for all finite θ ∈ [T̄ , ∞). The convergence of
the trajectories of the impulsive system to 0 simply follows from
the boundedness and continuity of the function V (x(t)) on every
interval (tk, tk+1). The proof is complete. ♦

In the above result, we can clearly see that the structure of the
control law fits exactly the structure of the conditions, which
allows us to obtain lossless results. Without this sustain of the
value of K̃(τ ) to K̃(T̄ ) for all τ ∈ [T̄ , Tk), deriving a minimum
dwell-time stabilization result would have been much trickier. As
a concluding remark on stabilization under minimum dwell-time,
we note that the proposed control law just needs to be computed
offline and is easy to implement.

Example 3. Let us consider the system (36) with matrices

A =


1 0
1 2


, B =


1
0


and J =


1 1
1 3


. (53)

Note that this system has both unstable flow and jumps. If we
therefore assume that Kd = 0, then the system cannot be stabilized
for arbitrary dwell-times since the jumps are destabilizing. Thus,
we want to compute K̃c(τ ) such that the minimum dwell-time is,
at most, T̄ = 0.1. Invoking Theorem 3.2, statement (b), with poly-
nomial matrices Uc(τ ) and S(τ ) of order 1, we find the controller

K̃c(τ ) =
1

d(τ )


1.4750481 + 3.2714889τ − 41.011914τ 2

3.9063911 − 1.6733059τ − 37.472443τ 2

T
where d(τ ) = −0.19767438 + 0.78454217τ + 7.6562219τ 2.
State-trajectories of the closed-loop system, for some randomly
generated impulse-times satisfying the dwell-time constraint, are
depicted in Fig. 1. We can clearly see that the controller stabilizes
the system. In terms of computational complexity, only 27 vari-
ables are defined by SOSTOOLS.

4. Application to aperiodic uncertain sampled-data systems

It is well-known that sampled-data systems can be reformu-
lated as impulsive systems. On the basis of this reformulation, all
the results developed in the previous sections therefore apply. It
is hence possible to obtain robust stabilization results for aperi-
odic uncertain sampled-data systemswith inter-sampling times in
a range, providing then a solution to this challenging problem. In
terms of robust stability analysis, the proposed approach is compu-
tationally less expensive than those based on looped-functionals;
see Briat and Seuret (2012b) and Seuret and Peet (2013).

4.1. Preliminaries

Let us consider here the continuous-time system

ẋ(t) = Ax(t) + Bu(t) (54)
Fig. 1. State-trajectories of the closed-loop system (53).

where x ∈ Rn and u ∈ Rm are the state of the system and the con-
trol input, respectively. The control input is assumed to be com-
puted from a sampled-data state-feedback control law given by

u(t) = K1x(tk) + K2u(tk−1), t ∈ [tk, tk+1) (55)

where K1 ∈ Rm×n and K2 ∈ Rm×m are the control gains to be deter-
mined. Note that the control-law, viewed as a discrete-map from x
to u, is BIBO-stable if and only if K2 is Schur. Above, the sequence of
sampling instants {tk}k∈N is assumed to be strictly increasing and
unbounded, i.e. tk → ∞, excluding therefore any Zeno behavior.

The sampled-data system (54)–(55) can be equivalently refor-
mulated as the following impulsive system
ẋ(t)
ż(t)


=


A B
0 0


  

Ā


x(t)
z(t)


, t ≠ tk


x(t)
z(t)


=


I 0
K1 K2


  

J̄


x−(t)
z−(t)


, t = tk

(56)

where z ∈ Rm is an additional state containing the value of the
held control input at any time, i.e. z(t) = u(tk), t ∈ [tk, tk+1). For
convenience, we also decompose J̄ as J̄ = J0 + B0K where

J0 =


I 0
0 0


, B0 =


0
I


and K =


K1 K2


. (57)

4.2. Stabilization of sampled-data systems

Stabilization of sampled-data systems being the most interest-
ing problem, we will therefore focus on the stabilization of aperi-
odic sampled-data systems. The periodic case is readily recovered
by setting Tmax = Tmin = T̄ . As in the previous stabilization results,
a suitable stabilizing controller gain K can be extracted from the
solutions of a feasibility problem.

Theorem 4.1 (Aperiodic Sampled-Data Systems). The following state-
ments are equivalent:

(a) There exists a control law of the form (55) that quadratically
stabilizes the system (54) for any aperiodic sampling instant
sequence {tk} such that Tk ∈ [Tmin, Tmax].

(b) There exist a differentiable matrix function R : [0, Tmax] → Sn+m,
S(0) ≻ 0, a matrix Y ∈ Rm×(n+m) and a scalar ε > 0 such that
the conditions

Ā(τ )S(τ ) + S(τ )Ā(τ )T + Ṡ(τ ) ≼ 0 (58)
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Table 3
Estimates on the minimum and/or maximum sampling period for the systems of
Examples 4 and 5—aperiodic case.

dR System (60) System (61)
Tmax Tmin Tmax

Theorem 2.1 4 1.7279 0.4 1.6316
6 1.7252 0.4 1.8270

Fridman et al. (2004) – 0.869 – –
Naghshtabrizi et al.
(2008)

– 1.113 – –

Fridman (2010) – 1.695 – –
Liu et al. (2010) – 1.695 – –
Seuret (2012) – 1.723 0.400 1.251
Seuret and Peet
(2013)

3 1.7294 0.4 1.820
5 1.7294 0.4 1.828

and
−S(θ) + εI J0 + B0Y

⋆ −S(0)


≼ 0 (59)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax]. Moreover,
when this statement holds, a suitable stabilizing control gain can
be obtained using the expression K = YS(0)−1.

Remark 3. Interestingly, it is also possible to impose K2 = 0 with-
out introducing any conservatism. Such a controller can indeed be
designed by simply imposing the value 0 to the n × m right-upper
block of the matrix S(0). The reason why this equality constraint is
non-restrictive lies in the fact that eĀT̄ J is a block lower triangular
matrix, and that it is well known that stability of cascade systems
(that are represented in terms of block triangular matrices) can be
exactly characterized by block diagonal Lyapunov functions.

Example 4. Let us consider the sampled-data system (54) with
matrices

A =


0 1
0 −0.1


and B =


0
0.1


. (60)

Fixed control law: Assume first that the control law is given as
in Branicky, Phillips, and Zhang (2000) by K1 =


−3.75 −11.5


and K2 = 0. Results in the aperiodic case (Tmin has been set to
0.001) are summarized in Table 3 together with some comparisons
with previous ones based on functionals. The proposed approach
yields results that are very close to the looped-functional approach
developed in Seuret and Peet (2013) together with a reduced
computational complexity. The semidefinite program generated
by SOSTOOLS involves, when R or S is of degree 4, 192 variables
whereas the approach of Seuret and Peet (2013) involves 1256
variables when using a polynomial of order 3. The execution time
is about 1 s whereas it is approximately of 4.46 s for the looped
functional approach of Seuret and Peet (2013).

Control design: Assume now that the control gains K1 and K2
have to be determined such that the closed-loop system is stable
for any inter-sampling times in [Tmin, Tmax]. Applying then Theo-
rem 4.1, we obtain the results gathered in Table 4 where, follow-
ing Remark 3, K2 = 0 has been imposed in the three last scenarios.
We can see that the computed controllers involve numerical val-
ues with reasonable magnitude. The involved number of variables
for degrees of R or S equal to 2 and 3 are 201 and 432, respectively.

Example 5. Let us consider the following sampled-data system
(54) with matrices

A =


0 1

−2 0.1


and B =


0
1


(61)
Table 4
Control design results for system (60) using Theorem 4.1.

Tmin Tmax K1 K2 dR

0.001 10

−0.1145 −0.8088


−0.0024 2

50

−0.0202 −0.1560


−0.0030 2

0.001 10

−0.0310 −0.3222


0 3

50

−0.0259 −0.2726


0 4

Table 5
Control design results for system (62) using Theorem 4.1.

δ Tmin Tmax K1 K2 dR

5 0.001 10

−0.0757 −0.7306


−0.0006 2

5 20

−0.0411 −0.3835


−0.0022 2

20 0.001 10

−0.0578 −0.5560


−0.0025 2

20 20

−0.0339 −0.3121


−0.0019 2

borrowed from the time-delay system literature (Niculescu, Gu,
& Abdallah, 2003). Assuming the control law K1 =


1 0


and

K2 = 0, we get the results of Table 3. We obtain a result very close
to the one of Seuret and Peet (2013) using a matrix R or S of degree
6,which corresponds to 330 variables. The result of Seuret and Peet
(2013) considering a matrix polynomial of order 5 involves 3414
variables. The execution time is about 1.12 s whereas it is approxi-
mately of 15.34 s for the looped functional approach of Seuret and
Peet (2013).

4.3. Robust stabilization of periodic and aperiodic sampled-data
systems

Results on robust stabilization of sampled-data systems are
straightforward extensions of Theorem 4.1; they are omitted for
brevity. Only the following example is discussed:

Example 6. Let us consider the uncertain sampled-data system
(54) with matrices

A ∈ A = co


0 1
0 −0.1


, δ


0 1
0 −0.1


and B =


0
1


(62)

where δ is a positive parameter. We then apply Theorem 4.1 to de-
sign robust state-feedback controllers for different values for δ > 0
and Tmax > 0. The results are summarized in Table 5 where we
can see that the system can be stabilized for quite a wide range of
values for the parameter δ and the maximal sampling period Tmax.
For a polynomial of order 2, the semidefinite program involve 237
variables. The execution time including pre- and post-processing
is about 2.23 s.
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