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Positive systems analysis

Quadratic forms are widely used for systems analysis: Lyapunov inequality,
Kalman-Yakubovich-Popov Lemma, integral quadratic constraints etc.

Analysis can be simplified if systems are known to be positive

Lyapunov inequality:
I ∃P � 0 such that AT P + PA ≺ 0
I ∃z > 0 (element-wise) such that Az < 0

Kalman-Yakubovich-Popov Lemma:

I

[
(jωI − A)−1B

I

]∗
Q
[
(jωI − A)−1B

I

]
≺ 0 ∀ω ∈ [0,∞]

I ∃x, u, p ≥ 0 such that

Ax + Bu ≤ 0 and Q
[

x
u

]
+

[
AT

BT

]
p ≤ 0

The theory of integral linear constraints (ILCs)?
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Positive closed-loop systems

Positive systems

A system G is said to be positive if

u(t) ≥ 0 ∀t ≥ 0 =⇒ y(t) = (Gu)(t) ≥ 0 ∀t ≥ 0
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Given a positive feedback interconnection of two positive systems G1 and G2, is the
closed-loop map (d1, d2) 7→ (u1, y1, u2, y2) always positive?

No!
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Positive closed-loop systems

Positive systems

A simple counterexample:

+

+
d2 = 0
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1

d1 7→ u1 =
1

1− 2
= −1
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Positive closed-loop systems

Feedback interconnections
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Ĝ1(s) = C1(sI − A1)
−1B1 + D1

Ĝ2(s) = C2(sI − A2)
−1B2 + D2

A1 and A2 are Metzler and B1 ≥ 0, B2 ≥ 0, C1 ≥ 0, C2 ≥ 0, D1 ≥ 0, and D2 ≥ 0
(element-wise) implies G1 and G2 are positive

Positivity of closed-loop map [Ebihara et. al. 2011]
If ρ(D1D2) < 1, then (d1, d2) 7→ (u1, y1, u2, y2) is positive
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Positive closed-loop systems

Feedback interconnections

+

+
d2

d1

u1

u2y2

y1
G1

G2

Suppose (nonlinear) Gi : L1e → L1e are causal and positive, define

α(Gi) := sup
T>0

inf
∆T>0

sup
x,y∈L1e;PT x=PT y
PT+∆T (x−y)6=0

‖PT+∆T(Gix− Giy)‖1

‖PT+∆T(x− y)‖1

Positivity of closed-loop map
If α(G1)α(G2) < 1, then (d1, d2) 7→ (u1, y1, u2, y2) is positive
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Robust stability

Robust stability of feedback systems
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Integral quadratic constraints (IQCs) [Megretski & Rantzer 97]
Given bounded, causal G1 : L2e → L2e and G2 : L2e → L2e, suppose there exists linear
Π : L2 → L2 such that

[τG1,G2] is well-posed for all τ ∈ [0, 1];∫∞
0 v(t)T(Πv)(t) dt ≥ 0 ∀v ∈ G (τG1) :=

{[
u
y

]
∈ L2 : y = τG1u

}
, τ ∈ [0, 1];∫∞

0 w(t)T(Πw)(t) dt ≤ −ε
∫∞

0 |w(t)|2 dt ∀w ∈ G ′(G2),

then [G1,G2] is stable
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Robust stability

Integral quadratic constraint (IQC) examples

Structure of G1 Π Condition

G1 is passive
[

0 I
I 0

]

‖G1‖ ≤ 1
[

x(jω)I 0
0 −x(jω)I

]
x(jω) ≥ 0

G1 ∈ [−1, 1]

[
X(jω) Y(jω)
Y(jω)∗ −X(jω)

]
X = X∗ ≥ 0, Y = −Y∗

G1(t) ∈ [−1, 1]

[
X Y
YT −X

]
X = X∗ ≥ 0, Y = −Y∗

G1(s) = e−θs − 1,
for θ ∈ [0, θ0]

[
x(jω)ρ(ω)2 0

0 −x(jω)

]
ρ(ω) = 2 max

|θ|≤θ0
sin(θω/2)
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Robust stability

Robust stability of positive feedback systems
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Integral linear constraints

Given bounded, causal, linear G1 : Lm
1e → Lp

1e and G2 : Lp
1e → Lm

1e, suppose there exists
Π ∈ R1×m+p such that

[τG1,G2] is well-posed and positive for all τ ∈ [0, 1];∫∞
0 Πv(t) dt ≥ 0 ∀v ∈ G+(τG1) :=

{[
u
y

]
∈ L1+ : y = τG1u

}
, τ ∈ [0, 1];∫∞

0 Πw(t) dt ≤ −ε
∫∞

0 |w(t)| dt ∀w ∈ G ′+(G2),

then [G1,G2] is stable

When G1 and G2 are LTI, conditions can be stated as

Π

[
I

τ Ĝ1(0)

]
≥ 0 and Π

[
Ĝ2(0)

I

]
< 0
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Geometric intuition

Geometric interpretation of integral quadratic constrains

G (G1)

G ′(G2)

Feedback stability

G (G1) + G ′(G2) = L2;

G (G1) ∩ G ′(G2) = {0}
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Geometric intuition

Geometric interpretation of integral linear constraints

G+(G1)

G ′
+(G2)

Feedback stability

G+(G1) + G ′+(G2) = L1+;

G+(G1) ∩ G ′+(G2) = {0}
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Geometric intuition

Geometric interpretation of integral linear constraints

G+(G1)

G ′
+(G2)

Integral linear constraints∫∞
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0 Πw(t) dt ≤ −ε
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Example

LTI systems

+

+
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Ĝ1(s) = C1(sI − A1)
−1B1 + D1

Ĝ2(s) = C2(sI − A2)
−1B2 + D2

A1 and A2 are Metzler, Hurwitz and B1 ≥ 0, B2 ≥ 0, C1 ≥ 0, C2 ≥ 0, D1 ≥ 0, and
D2 ≥ 0

Robust stability [Ebihara et. al. 2011] [Tanaka et. al. 2013]

If ρ(Ĝ1(0)Ĝ2(0)) < 1, then [G1,G2] is stable

Can be recovered with integral linear constraint theorem with

Π := zT [Ĝ1(0) −I
]
,

where zT(Ĝ1(0)Ĝ2(0)− I) < 0
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Example

Conclusions:

Sufficient condition for positivity to be preserved under feedback

Developed integral linear constraints theory for analysis of feedback
interconnections with positive closed-loop mappings

Many extensions possible:

I Positive coprime factorisations

I Integral linear constraints with time-varying multipliers

I LMI conditions for verifying integral linear constraints

I Stabilisation of open-loop unstable dynamics?
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