### Positive systems analysis via integral linear constraints

#### Sei Zhen Khong<sup>1</sup>, Corentin Briat<sup>2</sup>, and Anders Rantzer<sup>3</sup>

<sup>1</sup>Institute for Mathematics and its Applications University of Minnesota

<sup>2</sup>Department of Biosystems Science and Engineering Swiss Federal Institute of Technology Zürich (ETH Zürich), Switzerland

> <sup>3</sup>Department of Automatic Control Lund University, Sweden

IEEE Conference on Decision and Control

18 Dec 2015

### Positive systems analysis

- Quadratic forms are widely used for systems analysis: Lyapunov inequality, Kalman-Yakubovich-Popov Lemma, integral quadratic constraints etc.
- Analysis can be simplified if systems are known to be positive
- Lyapunov inequality:
  - $\exists P \succ 0$  such that  $A^T P + PA \prec 0$
  - ▶  $\exists z > 0$  (element-wise) such that Az < 0
- Kalman-Yakubovich-Popov Lemma:

$$\blacktriangleright \begin{bmatrix} (j\omega I - A)^{-1}B\\I \end{bmatrix}^* Q \begin{bmatrix} (j\omega I - A)^{-1}B\\I \end{bmatrix} \prec 0 \quad \forall \omega \in [0, \infty]$$

▶  $\exists x, u, p \ge 0$  such that

$$Ax + Bu \le 0$$
 and  $Q\begin{bmatrix} x\\ u\end{bmatrix} + \begin{bmatrix} A^T\\ B^T\end{bmatrix} p \le 0$ 

The theory of integral linear constraints (ILCs)?

Positive closed-loop systems

## 2 Robust stability

## 3 Geometric intuition



< 口 > < 🗗

• E •

-

Positive closed-loop systems

## 2 Robust stability

3 Geometric intuition

### 4 Example

・ロト ・回ト ・ヨト ・ヨト

### Positive systems

A system G is said to be positive if

$$u(t) \ge 0 \ \forall t \ge 0 \implies y(t) = (Gu)(t) \ge 0 \ \forall t \ge 0$$



Given a positive feedback interconnection of two positive systems  $G_1$  and  $G_2$ , is the closed-loop map  $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$  always positive?

No!

### Positive systems

A system G is said to be positive if

$$u(t) \ge 0 \ \forall t \ge 0 \implies y(t) = (Gu)(t) \ge 0 \ \forall t \ge 0$$



Given a positive feedback interconnection of two positive systems  $G_1$  and  $G_2$ , is the closed-loop map  $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$  always positive?

### No!

## Positive systems

A simple counterexample:



イロト イヨト イヨト イヨト

## Feedback interconnections



$$\hat{G}_1(s) = C_1(sI - A_1)^{-1}B_1 + D_1$$
  
 $\hat{G}_2(s) = C_2(sI - A_2)^{-1}B_2 + D_2$ 

•  $A_1$  and  $A_2$  are Metzler and  $B_1 \ge 0$ ,  $B_2 \ge 0$ ,  $C_1 \ge 0$ ,  $C_2 \ge 0$ ,  $D_1 \ge 0$ , and  $D_2 \ge 0$ (element-wise) implies  $G_1$  and  $G_2$  are positive

Positivity of closed-loop map [Ebihara et. al. 2011] If  $\rho(D_1D_2) < 1$ , then  $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$  is positive

## Feedback interconnections



Suppose (nonlinear)  $G_i : \mathbf{L}_{1e} \to \mathbf{L}_{1e}$  are causal and positive, define

$$\alpha(G_i) := \sup_{T>0} \inf_{\Delta T>0} \sup_{x,y \in \mathbf{L}_{1e}; P_{T} = P_{Ty} \atop P_{T+\Delta T}(x-y) \neq 0} \frac{\|P_{T+\Delta T}(G_i x - G_i y)\|_1}{\|P_{T+\Delta T}(x-y)\|_1}$$

Positivity of closed-loop map

If  $\alpha(G_1)\alpha(G_2) < 1$ , then  $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$  is positive

Khong, Briat, Rantzer (UMN, ETH, Lund)

Image: Image:

. . . . . . . .

Positive closed-loop systems

## 2 Robust stability

3 Geometric intuition

#### 4 Example

## Robust stability of feedback systems



Integral quadratic constraints (IQCs) [Megretski & Rantzer 97]

Given bounded, causal  $G_1 : \mathbf{L}_{2e} \to \mathbf{L}_{2e}$  and  $G_2 : \mathbf{L}_{2e} \to \mathbf{L}_{2e}$ , suppose there exists linear  $\Pi : \mathbf{L}_2 \to \mathbf{L}_2$  such that

• 
$$[\tau G_1, G_2]$$
 is well-posed for all  $\tau \in [0, 1]$ ;

• 
$$\int_0^\infty v(t)^T (\Pi v)(t) \, dt \ge 0 \quad \forall v \in \mathscr{G}(\tau G_1) := \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \in L_2 : y = \tau G_1 u \right\}, \tau \in [0, 1];$$

• 
$$\int_0^\infty w(t)^T (\Pi w)(t) dt \le -\epsilon \int_0^\infty |w(t)|^2 dt \quad \forall w \in \mathscr{G}'(G_2),$$

then  $[G_1, G_2]$  is stable

. . . . . . .

Image: Image:

# Integral quadratic constraint (IQC) examples

| Structure of G <sub>1</sub>                        | Π                                                                                     | Condition                                                          |
|----------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| $G_1$ is passive                                   | $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$                                        |                                                                    |
| $\ G_1\  \le 1$                                    | $\begin{bmatrix} x(j\omega)I & 0 \\ 0 & -x(j\omega)I \end{bmatrix}$                   | $x(j\omega) \ge 0$                                                 |
| $G_1 \in [-1,1]$                                   | $\begin{bmatrix} X(j\omega) & Y(j\omega) \\ Y(j\omega)^* & -X(j\omega) \end{bmatrix}$ | $X = X^* \ge 0, \ Y = -Y^*$                                        |
| $G_1(t) \in [-1,1]$                                | $\begin{bmatrix} X & Y \\ Y^T & -X \end{bmatrix}$                                     | $X = X^* \ge 0, \ Y = -Y^*$                                        |
| $G_1(s)=e^{-	heta s}-1,$ for $	heta\in[0,	heta_0]$ | $\begin{bmatrix} x(j\omega)\rho(\omega)^2 & 0\\ 0 & -x(j\omega) \end{bmatrix}$        | $ ho(\omega) = 2 \max_{ \theta  \le 	heta_0} \sin(	heta \omega/2)$ |

ъ

→ ∃ →

# Robust stability of positive feedback systems



#### Integral linear constraints

Given bounded, causal, linear  $G_1 : \mathbf{L}_{1e}^m \to \mathbf{L}_{1e}^p$  and  $G_2 : \mathbf{L}_{1e}^p \to \mathbf{L}_{1e}^m$ , suppose there exists  $\Pi \in \mathbb{R}^{1 \times m+p}$  such that

•  $[\tau G_1, G_2]$  is well-posed and positive for all  $\tau \in [0, 1]$ ;

• 
$$\int_0^\infty \Pi v(t) dt \ge 0 \quad \forall v \in \mathscr{G}_+(\tau G_1) := \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \in \mathbf{L}_{1+} : y = \tau G_1 u \right\}, \tau \in [0, 1];$$
  
•  $\int_0^\infty \Pi w(t) dt \le -\epsilon \int_0^\infty |w(t)| dt \quad \forall w \in \mathscr{G}'_+(G_2),$ 

then  $[G_1, G_2]$  is stable

When  $G_1$  and  $G_2$  are LTI, conditions can be stated as

• 
$$\Pi \begin{bmatrix} I \\ \tau \hat{G}_1(0) \end{bmatrix} \ge 0$$
 and  $\Pi \begin{bmatrix} \hat{G}_2(0) \\ I \end{bmatrix} < 0$ 

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Positive closed-loop systems

## 2 Robust stability

3 Geometric intuition

#### 4 Example

・ロト ・回ト ・ヨト ・ヨト

## Geometric interpretation of integral quadratic constrains



### Feedback stability

- $\mathscr{G}(G_1) + \mathscr{G}'(G_2) = L_2;$
- $\mathscr{G}(G_1) \cap \mathscr{G}'(G_2) = \{0\}$

イロト イヨト イヨト イヨト

# Geometric interpretation of integral quadratic constraints



### Integral quadratic constraints (IQCs)

• 
$$\int_0^\infty v(t)^T (\Pi v)(t) dt \ge 0 \quad \forall v \in \mathscr{G}(G_1);$$

• 
$$\int_0^\infty w(t)^T (\Pi w)(t) dt \le -\epsilon \int_0^\infty |w(t)|^2 dt \quad \forall w \in \mathscr{G}'(G_2)$$

(I)

## Geometric interpretation of integral linear constraints

$$\mathscr{G}_+(G_1)$$
  
 $\mathscr{G}'_+(G_2)$ 

### Feedback stability

- $\mathscr{G}_+(G_1) + \mathscr{G}'_+(G_2) = \mathbf{L}_{1+};$
- $\mathscr{G}_+(G_1) \cap \mathscr{G}'_+(G_2) = \{0\}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# Geometric interpretation of integral linear constraints



#### Integral linear constraints

• 
$$\int_0^\infty \Pi v(t) dt \ge 0 \quad \forall v \in \mathscr{G}_+(G_1);$$

• 
$$\int_0^\infty \Pi w(t) dt \le -\epsilon \int_0^\infty |w(t)| dt \quad \forall w \in \mathscr{G}'_+(G_2)$$

イロト イヨト イヨト イヨ

Positive closed-loop systems

- 2 Robust stability
- 3 Geometric intuition



イロト イヨト イヨト イヨト

## LTI systems



•  $A_1$  and  $A_2$  are Metzler, Hurwitz and  $B_1 \ge 0$ ,  $B_2 \ge 0$ ,  $C_1 \ge 0$ ,  $C_2 \ge 0$ ,  $D_1 \ge 0$ , and  $D_2 \ge 0$ 

Robust stability [Ebihara et. al. 2011] [Tanaka et. al. 2013] If  $\rho(\hat{G}_1(0)\hat{G}_2(0)) < 1$ , then  $[G_1, G_2]$  is stable

Can be recovered with integral linear constraint theorem with

$$\Pi := z^T \begin{bmatrix} \hat{G}_1(0) & -I \end{bmatrix},$$

where  $z^{T}(\hat{G}_{1}(0)\hat{G}_{2}(0) - I) < 0$ 

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Conclusions:

- Sufficient condition for positivity to be preserved under feedback
- Developed integral linear constraints theory for analysis of feedback interconnections with positive closed-loop mappings
- Many extensions possible:
  - Positive coprime factorisations
  - Integral linear constraints with time-varying multipliers
  - LMI conditions for verifying integral linear constraints
  - Stabilisation of open-loop unstable dynamics?