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Linear positive systems

Internally positive systems

ẋ(t) = Ax(t)
x(0) = x0

(1)

I (P1) Positive orthant Rn
+ invariant: x0 ∈ Rn

+ ⇒ x(t) ∈ Rn
+, for all t ≥ 0

I NSC: A is a Metzler matrix (nonnegative off-diagonal elements)

Input/Output Positive systems

ẋ(t) = Ax(t) + Ew(t)
z(t) = Cx(t) + Fw(t)
x(0) = x0

(2)

I (P1) holds
I (P2) For all w(t) ≥ 0, we have z(t) ≥ 0

I NSC: A is Metzler and E,C, F are nonnegative
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Stability analysis

Quadratic Lyapunov Functions

I V (x) = xTPx, P = PT � 0

I Enough to pick a diagonal P
ATP + PA ≺ 0

I Semidefinite programming, LMIs
I Suitable for L2-gain analysis (H∞-norm)

Copositive linear Lyapunov Functions

I V (x) = λT x, λ > 0
λTA < 0

I Linear programming
I Suitable for L1- and L∞-gain analysis
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Induced norms for positive systems

I h(t) ∈ Rq×p
+ : impulse response of the positive system Σ

I Output z = h ∗ w nonnegative when w nonnegative

L1-norm and L1-gain

||w||L1
:=

∫ ∞
0

1Tw(s)ds ||Σ||L1−L1
:= max

j

{∑
i

∫ ∞
0

hij(s)ds

}

L∞-norm and L∞-gain

||w||L∞ := ess sup
t
||w(t)||∞, ||Σ||L∞−L∞ := max

i

∑
j

∫ ∞
0

hij(s)ds


= ||Σ∗||L1−L1

where

Σ∗ =

[
AT CT

ET FT

]
.
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Stability analysis and norm computation
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L1-gain analysis

Theorem
Let (A,E,C, F ) be an input-output positive system. The following statements are
equivalent:

1. The system is asymptotically stable and the L1-gain smaller than γ > 0

2. G(s) is asymptotically stable and 1T
q G(0) < γ1T

q

3. G(s) is asymptotically stable and 1T
q (F − CA−1E) < γ1T

q

4. There exists a vector λ > 0 such that the inequalities
a. λT

A+ 1
T
q C < 0

b. λT
E − γ1T

p + 1
T
q F < 0

hold.

Remarks

I Linear programming problem
I Actual L1-gain retrieved by minimizing γ > 0
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L∞-gain analysis

Theorem
Let (A,E,C, F ) be an input-output positive system. The following statements are
equivalent:

1. The system is asymptotically stable and the L∞-gain smaller than γ > 0

2. G(s) is asymptotically stable and G(0)1p < γ1p

3. G(s) is asymptotically stable and (F − CA−1E)1p < γ1p

4. There exists a vector λ > 0 such that the inequalities
a. Aλ+ E1p < 0
b. Cλ− γ1q + F1p < 0

hold.

Remarks

I Linear program
I Convenient for control
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Robust stability analysis
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Uncertain systems and LFT

Uncertain system

ẋ(t) = Au(δ)x(t) + Eu(δ)w1(t)
z1(t) = Cu(δ)x(t) + Fu(δ)w1(t)

δ ∈ δ := [0, 1]N
(3)

I Au(δ) Metzler for all δ ∈ δ

I Eu(δ), Cu(δ) and Fu(δ) nonnegative for all δ ∈ δ

Linear Fractional Representation

ẋ(t) = Ax(t) + E0w0(t) + E1w1(t)
z0(t) = C0x(t) + F00w0(t) + F01w1(t)
z1(t) = C1x(t) + F10w0(t) + F11w1(t)
w0(t) = ∆(δ)z0(t)

(4)

I A Metzler
I C0, C1, E1, F01 and F11 nonnegative
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Integral linear constraints

I Σ ∈ Σ where Σ is a family of positive operators
I z = Σw for some nonnegative input signal w
I Family can be characterized in terms of an Integral Linear Constraint (ILC)∫ ∞

0
ϕT
1 z(s) + ϕT

2 w(s)ds ≥ 0 (5)

for all z = Σw, Σ ∈ Σ.
I Scaling factors ϕ1 and ϕ2 chosen accordingly
I Frequency domain interpretation

ϕT
1 ẑ(0) + ϕT

2 ŵ(0) ≥ 0
m[

ϕT
1 Σ̂(0) + ϕT

2

]
ŵ(0) ≥ 0

m
ϕT
1 Σ̂(0) + ϕT

2 ≥ 0

(6)

I Only ω = 0 is important
I Last inequality contains parametric uncertainties only
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Examples

Constant/Time-varying parameter uncertainty

I Parametric uncertainty δ(t) ∈ [0, 1], t ≥ 0∫ ∞
0

ϕT (1− δ(θ))w(θ)dθ ≥ 0⇐⇒ ϕ ≥ 0

Constant delay operator

I z(t) = w(t− h), ẑ(s) = e−shŵ(s)

ϕT
1 Σ̂(0) + ϕT

2 ≥ 0⇐⇒ ϕT
1 + ϕT

2 ≥ 0

Uncertain positive LTI system

I Uncertain asymptotically stable positive transfer function H ∈ H

I Static gain H(0) ∈ H0

ϕT
1 Z + ϕT

2 ≥ 0, Z ∈ H0 (7)
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Robust stability conditions

Theorem
The uncertain linear positive system is asymptotically stable if there exist λ ∈ Rn

++,
ϕ1(δ), ϕ2(δ) ∈ Rn0 and γ > 0 such that the robust linear program

λTA+ ϕ1(δ)TC0 + 1T
q C1 < 0

λTE0 + ϕ2(δ)T + ϕ1(δ)TF00 + 1T
q F10 < 0

λTE1 − γ1T
p + ϕ1(δ)TF01 + 1T

q F11 < 0

(8)

ϕ1(δ)T + ϕ2(δ)T ∆(δ) ≥ 0 (9)

is feasible for all δ ∈ δ. Moreover, in such a case, the L1-gain of the transfer from
w1 → z1 is bounded from above by γ.

I Robust linear program
I Polynomial dependence→ Handelman’s Theorem (preserve linear program

structure)
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Examples
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Example 1 - Positive time-delay system

Let us consider a positive time-delay system

ẋ(t) = Ax(t) +Bx(t− h)

where A is Metzler and B is nonnnegative.

Linear Fractional Transformation

ẋ(t) = Ax(t) +Bw0(t)
z0(t) = x(t)
w0(t) = ∇h(z0)(t)

where ∇h is the constant delay operator with transfer function e−sh.

Stability conditions

λTA+ ϕT < 0

λTB − ϕT < 0

for some ϕ ∈ Rn. Condition equivalent to

λT (A+B) < 0.
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Example 2 - Positive system with parametric uncertainty (1)

Let us consider the positive uncertain system with constant parametric uncertainty
δ ∈ [0, 1]:

ẋ(t) = (A0 + δA1 + δ2A2)x(t) + (E0 + δE1 + δ2E2)w1(t)

z1(t) = (C0 + δC1 + δ2C2)x(t) + (F0 + δF1 + δ2F2)w1(t)
(10)

I 3 states, 2 inputs and 2 outputs

ϕ1(δ) ϕ2(δ) constraints computed L1-gain time
ϕ0
1 ϕ0

2 ϕ0
1 ≥ 0, ϕ0

1 + ϕ0
2 ≥ 0 133.95 2.7844s

ϕ1
1δ ϕ0

2 ϕ1
1 = −ϕ0

2 133.95 3.829s
ϕ1
1δ + ϕ2

1δ
2 ϕ0

2 + ϕ1
2δ ϕ1

1 = −ϕ0
2, ϕ2

1 = −ϕ1
2 94.167 4.2758s

Table: L1-gain computation of the transfer w1 → z1 – Exact L1-gain: 92.8358
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Example 2 - Positive system with parametric uncertainty (2)

Let us consider the positive uncertain system with constant parametric uncertainty
δ ∈ [0, 1]:

ẋ(t) = (A0 + δA1 + δ2A2)x(t) + (E0 + δE1 + δ2E2)w1(t)

z1(t) = (C0 + δC1 + δ2C2)x(t) + (F0 + δF1 + δ2F2)w1(t)
(11)

I 3 states, 2 inputs and 2 outputs

ϕ1(δ) ϕ2(δ) constraints computed L∞-gain time
ϕ0
1 ϕ0

2 ϕ0
1 ≥ 0, ϕ0

1 + ϕ0
2 ≥ 0 86.195 0.68989s

ϕ1
1δ ϕ0

2 ϕ1
1 = −ϕ0

2 86.195 1.4629s
ϕ1
1δ + ϕ2

1δ
2 ϕ0

2 + ϕ1
2δ ϕ1

1 = −ϕ0
2, ϕ2

1 = −ϕ1
2 82.025 1.7509s

Table: L∞-gain computation of the transfer w1 → z1 – Exact L∞-gain: 82.0249
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Conclusion
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Conclusion and Future Works

Conclusion

I Computing the L1-gain of positive systems⇔ Solving a linear programming
problem

I Computing of the L∞-gain of positive systems⇔ Computing the L1-gain of
positive systems

I Robustness analysis can be done in this framework (possibly nonconservative)
I Possible improvements over the L2-gain

Future Works

I Controller design (state-feedback, structured, static-output, with bounded
coefficients): linear programming problem

I Design of dynamic output feedback ?
I Application to a real process
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Thank you for your attention
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Handelman’s Theorem

Theorem
Let ∆ be a convex polyhedra in RN and a family G of linear functions
gi(x) = αT

i x+ βi such that

∆ =
{
x ∈ RN : gi(x) ≥ 0

}
.

Then any polynomial nonnegative over ∆ can be rewritten in terms of a nonnegative
linear combination of powers of the gi’s.

Example

I p(x) is a polynomial of degree 2 nonnegative on the interval [−1, 1]

I Basis: g1(x) = x+ 1 and g2(x) = 1− x
I The Handelman’s Theorem claims that there exist τi ≥ 0, i = 1, . . . , 5 such that

p(x) = α2x
2 + α1x+ α0

= τ1g1(x) + τ2g2(x) + τ3g1(x)g2(x) + τ4g1(x)2 + τ5g2(x)2
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