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Introduction

Linear positive systems

Internally positive systems

#(t)
z(0)

Az (t)
o (1)

> (P1) Positive orthant R} invariant: zo € R} = z(t) € RY, forallt >0
» NSC: A is a Metzler matrix (nonnegative off-diagonal elements)

Input/Output Positive systems

z(t) = Azx(t)+ Ew(t)
z(t) = Cuz(t)+ Fw(t) (2)
z(0) = =0

> (Py) holds
> (P») Forall w(t) > 0, we have z(t) >0
» NSC: A is Metzler and E, C, F' are nonnegative
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Introduction
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Stability analysis

Quadratic Lyapunov Functions

> V(z) =zTPz,P=PT »0

» Enough to pick a diagonal P
ATP+PA<O

» Semidefinite programming, LMIs
» Suitable for L2-gain analysis (Ho-norm)

Copositive linear Lyapunov Functions

» V() =XTz,A>0
ATA<o

» Linear programming
» Suitable for Li- and L,-gain analysis
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Introduction

Induced norms for positive systems

> h(t) € R‘fpz impulse response of the positive system 3
» Qutput z = h * w nonnegative when w nonnegative

Li-norm and L;-gain

ol = [T 1TwEds 18] :=mjax{2 / hw(s)ds}
0 —Jo

Loo-norm and L.-gain

[e @)
[l —— max{Ej/ hij(S)dS}
1 n 0
J

[lwl|oe = eSStsupl\w(t)Hom
= HE*HL1*L1

where r -
v [

6/22

C. Briat [KTH / .ACCESE " ]



Stability analysis and norm computation

C. Briat [KTH / .ACCESE " | 7122



Stability analysis and norm computation
s,

L,-gain analysis

Theorem
Let (A, E,C, F) be an input-output positive system. The following statements are

equivalent:
1. The system is asymptotically stable and the L1 -gain smaller than~ > 0
2. G(s) is asymptotically stable and ILqTG (0) < 'yan
3. G(s) is asymptotically stable and 1] (F — CA™'E) < y1]
4. There exists a vector A > 0 such that the inequalities
axA+1lc<o
b. \TE—~41] +17F <0
hold.

Remarks

» Linear programming problem
» Actual L;-gain retrieved by minimizing v > 0
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Stability analysis and norm computation

Lo.~gain analysis

Theorem

Let (A, E,C, F) be an input-output positive system. The following statements are
equivalent:

1. The system is asymptotically stable and the L. -gain smaller than~ > 0
2. G(s) is asympitotically stable and G(0)1, < v1,

3. G(s) is asymptotically stable and (F — CA™1E)1, < 41,

4. There exists a vector A > 0 such that the inequalities

a. AN+ El, <0
b. CA—~l,+ F1, <0

hold.
Remarks

» Linear program
» Convenient for control

C. Briat [KTH / .ACCESE " ] 922



Robust stability analysis
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Robust stability analysis
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Robust stability analysis

Uncertain systems and LFT

Uncertain system

i(t) = Au(d)z(t) + Eu(0)wi(t)
z1(t) = Cu(8)z(t) + Fu(d)wi(t) (3)
5 e &:=, 1V

> Ay (6) Metzler forall 6 € 6
> E,(6),Cy(0) and F,,(8) nonnegative for all 6 € §

Linear Fractional Representation

m(t) = Ax(t) + Eowo (t) + Fiwq (t)

zo(t) = Cox(t) + Foowo(t) + Forw1 (t) 4)
Zl(t) = Clx(t) +F10'w0(t) +F11w1(t)

wo(t) = A(d)zo(t)

» A Metzler
» Co,C1, E1, Fo1 and F11 nonnegative
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Robust stability analysis
s o,

Integral linear constraints

» ¥ € X where X is a family of positive operators
» z = Xw for some nonnegative input signal w
» Family can be characterized in terms of an Integral Linear Constraint (ILC)

|70 + s > 0 (5)
0

forall z = Yw, ¥ € .
» Scaling factors ¢1 and ¢2 chosen accordingly
» Frequency domain interpretation

©1 2(0) + 3 @(0) > 0

[¢TS0) + T ] (0) > 0 (©)

i

¢1S(0) + 3 >0

» Only w = 0 is important
» Last inequality contains parametric uncertainties only
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Robust stability analysis
9,

Examples
Constant/Time-varying parameter uncertainty
» Parametric uncertainty 6(t) € [0,1], t > 0
/ T (1= 6(0))w(0)dd >0 <= ¢ >0
0
Constant delay operator
> 2(t) = w(t — h), 2(s) = e~ *"@(s)
eTS0) +¢F >0 <= o +ol >0
Uncertain positive LTI system
» Uncertain asymptotically stable positive transfer function H € J#
» Static gain H(0) € %
Pl Z+¢3 >0, Ze A @
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Robust stability analysis

Robust stability conditions

Theorem
The uncertain linear positive system is asymptotically stable if there exist X € R} ,
»1(9), p2(8) € R™ and~ > 0 such that the robust linear program

MNA+ro(O)Tco+1Tc1 < 0
M Eo+902(0)T +01(0) T Foo+15F1p < 0 (8)
MNE —y1F +01(0)TFor + 1] Fi1 < 0
e1(80)" + ¢2(8)TA() > 0 €)

is feasible for all § € 6. Moreover, in such a case, the L1 -gain of the transfer from
w1 — 21 IS bounded from above by ~.

» Robust linear program

» Polynomial dependence — Handelman’s Theorem (preserve linear program
structure)
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Examples
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Example 1 - Positive time-delay system

Let us consider a positive time-delay system

z(t) = Az(t) + Bx(t — h)

where A is Metzler and B is nonnnegative.

Linear Fractional Transformation

where V, is the constant delay operator with transfer function e™*".

Stability conditions

i) = Ac(t)+ Buo(t)
20(t) = z(¥)
wo(t) = Vi(20)(t)

for some ¢ € R™. Condition equivalent to
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MAreT < 0
MNB—oT < 0
M+ B)<o.

h
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4 Example 2 - Positive system with parametric uncertainty (1)

Let us consider the positive uncertain system with constant parametric uncertainty

6 €[0,1]:

() = (Ao+ A1 +8%2A42)x(t) + (Eo + 6E1 + 62 Ex)wi(t) (10)
(C() +6C1 + 6202).’17(t) + (Fo +6F) + §2F2)w1 (t)

21(t) =
» 3 states, 2 inputs and 2 outputs

01(6) | pa(8) | constraints || computed Ly-gain | time |

o9 ©9 W7 >0,¢7+ 3 >0 133.95 2.7844s
<p%6 gog <pi = 7<pg 133.95 3.829s
P16+ 9262 | @) +pLd | ol = -3, 07 = —pl 94.167 4.2758s

Table: L;-gain computation of the transfer w; — 27 — Exact L-gain: 92.8358
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4 Example 2 - Positive system with parametric uncertainty (2)

Let us consider the positive uncertain system with constant parametric uncertainty
5 e0,1]:

() = (Ao+ A1 +8%2A42)x(t) + (Eo + 6E1 + 62 Ex)wi(t)

2(t) = (Co+ 00 +52Ca)a(t) + (Fo +F1 + 62 Fb)w (¢) (1)

» 3 states, 2 inputs and 2 outputs

| w18 | @208 | constraints || computed Loo-gain | time |
2y ©9 >0, +¢3>0 86.195 0.68989s
015 8 ol =~y 86.195 1.4629s
@%5 + 4,0%52 4,0(2) + @%5 L,D% = —wg, <p% = —gp% 82.025 1.7509s

Table: L..-gain computation of the transfer w; — 21 — Exact L .-gain: 82.0249
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Conclusion
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Conclusion

Conclusion and Future Works

Conclusion

» Computing the L;-gain of positive systems < Solving a linear programming
problem

» Computing of the Loo-gain of positive systems < Computing the L;-gain of
positive systems

» Robustness analysis can be done in this framework (possibly nonconservative)
» Possible improvements over the La-gain

Future Works

» Controller design (state-feedback, structured, static-output, with bounded
coefficients): linear programming problem
» Design of dynamic output feedback ?

» Application to a real process

C. Briat [KTH / ACCESE " | 20/22



Thank you for your attention

C. Briat [KTH / ACCESE " | 21/22



Conclusion
b

Handelman’s Theorem

Theorem
Let A be a convex polyhedra in RN and a family G of linear functions
gi(z) = alx 4 B; such that

A:{zGRN: gi(z) 20}.
Then any polynomial nonnegative over A can be rewritten in terms of a nonnegative
linear combination of powers of the g; s.
Example
» p(z) is a polynomial of degree 2 nonnegative on the interval [—1, 1]

» Basis: gi(z) =z+1landga(z) =1—=x
» The Handelman’s Theorem claims that there exist r; > 0, = 1,...,5 such that

042:1:2 + a1+ ap
= 7191(2) 4 T292(2) + 7391 (x)g2(2) + Tag1(x)? + Tsg2(x)?

p(z)
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