Robust stability analysis of uncertain Linear Positive Systems via Integral Linear Constraints: L_1 and L_∞ -gain characterizations

December 14^{th} 2011 CDC 2011, Orlando, USA

Outline

- Introduction
- Stability analysis and norm computation
- Robust stability analysis
- Conclusion and Future Works

Stability analysis and norm computation

Introduction

Linear positive systems

Internally positive systems

$$\begin{array}{rcl}
\dot{x}(t) & = & Ax(t) \\
x(0) & = & x_0
\end{array} \tag{1}$$

- ▶ (P₁) Positive orthant \mathbb{R}^n_+ invariant: $x_0 \in \mathbb{R}^n_+ \Rightarrow x(t) \in \mathbb{R}^n_+$, for all $t \geq 0$
- ▶ NSC: *A* is a Metzler matrix (nonnegative off-diagonal elements)

Input/Output Positive systems

$$\begin{array}{rcl}
\dot{x}(t) & = & Ax(t) + Ew(t) \\
z(t) & = & Cx(t) + Fw(t) \\
x(0) & = & x_0
\end{array} \tag{2}$$

- ▶ (*P*₁) holds
- (P_2) For all w(t) > 0, we have z(t) > 0
- ▶ NSC: A is Metzler and E, C, F are nonnegative

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९○

Stability analysis

Quadratic Lyapunov Functions

- $V(x) = x^T P x, P = P^T > 0$
- ightharpoonup Enough to pick a diagonal P

$$A^T P + PA \prec 0$$

- Semidefinite programming, LMIs
- ▶ Suitable for L_2 -gain analysis (H_∞ -norm)

Copositive linear Lyapunov Functions

$$V(x) = \lambda^T x, \lambda > 0$$

$$\lambda^T A < 0$$

- Linear programming
- ▶ Suitable for L_1 and L_∞ -gain analysis

Induced norms for positive systems

- ▶ $h(t) \in \mathbb{R}^{q \times p}_+$: impulse response of the positive system Σ
- Output z = h * w nonnegative when w nonnegative

L_1 -norm and L_1 -gain

$$||w||_{L_1} := \int_0^\infty \mathbb{1}^T w(s) ds \qquad ||\Sigma||_{L_1 - L_1} := \max_j \left\{ \sum_i \int_0^\infty h_{ij}(s) ds \right\}$$

L_{∞} -norm and L_{∞} -gain

$$||w||_{L_{\infty}} := \operatorname{ess \, sup} ||w(t)||_{\infty}, \qquad ||\Sigma||_{L_{\infty} - L_{\infty}} \quad := \quad \max_{i} \left\{ \sum_{j} \int_{0}^{\infty} h_{ij}(s) ds \right\}$$

$$= \quad ||\Sigma^{*}||_{L_{1} - L_{1}}$$

where

C. Briat [KTH / ACCESS 1

Stability analysis and norm computation

L_1 -gain analysis

Theorem

Let (A,E,C,F) be an input-output positive system. The following statements are equivalent:

- 1. The system is asymptotically stable and the L_1 -gain smaller than $\gamma>0$
- **2.** G(s) is asymptotically stable and $\mathbb{1}_q^T G(0) < \gamma \mathbb{1}_q^T$
- 3. G(s) is asymptotically stable and $\mathbbm{1}_q^T(F-CA^{-1}E)<\gamma\mathbbm{1}_q^T$
- **4.** There exists a vector $\lambda > 0$ such that the inequalities

a.
$$\lambda^T A + \mathbb{1}_q^T C < 0$$

b.
$$\lambda^T E - \gamma \hat{1}_p^T + 1_q^T F < 0$$

hold.

Remarks

- ► Linear programming problem
- ▶ Actual L_1 -gain retrieved by minimizing $\gamma > 0$

L_{∞} -gain analysis

Theorem

Let (A, E, C, F) be an input-output positive system. The following statements are eauivalent:

Robust stability analysis

- 1. The system is asymptotically stable and the L_{∞} -gain smaller than $\gamma > 0$
- **2.** G(s) is asymptotically stable and $G(0)\mathbb{1}_n < \gamma\mathbb{1}_n$
- **3.** G(s) is asymptotically stable and $(F CA^{-1}E)\mathbb{1}_p < \gamma\mathbb{1}_p$
- **4.** There exists a vector $\lambda > 0$ such that the inequalities

a.
$$A\lambda + E\mathbb{1}_p < 0$$

b. $C\lambda - \gamma\mathbb{1}_q + F\mathbb{1}_p < 0$

hold.

Remarks

- Linear program
- Convenient for control

Robust stability analysis

Uncertain systems and LFT

Uncertain system

$$\begin{array}{rcl}
\dot{x}(t) &=& A_u(\delta)x(t) + E_u(\delta)w_1(t) \\
z_1(t) &=& C_u(\delta)x(t) + F_u(\delta)w_1(t) \\
\delta &\in& \boldsymbol{\delta} := [0, 1]^N
\end{array}$$
(3)

- ▶ $A_u(\delta)$ Metzler for all $\delta \in \delta$
- ▶ $E_u(\delta), C_u(\delta)$ and $F_u(\delta)$ nonnegative for all $\delta \in \delta$

Linear Fractional Representation

$$\begin{array}{rcl} \dot{x}(t) & = & Ax(t) + E_0 w_0(t) + E_1 w_1(t) \\ z_0(t) & = & C_0 x(t) + F_{00} w_0(t) + F_{01} w_1(t) \\ z_1(t) & = & C_1 x(t) + F_{10} w_0(t) + F_{11} w_1(t) \\ w_0(t) & = & \Delta(\delta) z_0(t) \end{array} \tag{4}$$

- A Metzler
- C_0, C_1, E_1, F_{01} and F_{11} nonnegative

C. Briat [KTH / ACCESS 1

Integral linear constraints

- $m \Sigma \in m \Sigma$ where $m \Sigma$ is a family of positive operators
- $\qquad \qquad z = \Sigma w \text{ for some nonnegative input signal } w$
- ▶ Family can be characterized in terms of an Integral Linear Constraint (ILC)

$$\int_0^\infty \varphi_1^T z(s) + \varphi_2^T w(s) ds \ge 0 \tag{5}$$

for all $z = \Sigma w$, $\Sigma \in \Sigma$.

- Scaling factors φ_1 and φ_2 chosen accordingly
- Frequency domain interpretation

$$\varphi_1^T \widehat{z}(0) + \varphi_2^T \widehat{w}(0) \ge 0$$

$$\updownarrow$$

$$\left[\varphi_1^T \widehat{\Sigma}(0) + \varphi_2^T\right] \widehat{w}(0) \ge 0$$

$$\updownarrow$$

$$\varphi_1^T \widehat{\Sigma}(0) + \varphi_2^T \ge 0$$
(6)

- ▶ Only $\omega = 0$ is important
- ► Last inequality contains parametric uncertainties only

Examples

Constant/Time-varying parameter uncertainty

▶ Parametric uncertainty $\delta(t) \in [0,1], t \geq 0$

$$\int_0^\infty \varphi^T (1 - \delta(\theta)) w(\theta) d\theta \ge 0 \Longleftrightarrow \varphi \ge 0$$

Constant delay operator

 $\triangleright z(t) = w(t-h), \widehat{z}(s) = e^{-sh}\widehat{w}(s)$

$$\varphi_1^T \widehat{\Sigma}(0) + \varphi_2^T \ge 0 \Longleftrightarrow \varphi_1^T + \varphi_2^T \ge 0$$

Uncertain positive LTI system

- ▶ Uncertain asymptotically stable positive transfer function $H \in \mathcal{H}$
- ▶ Static gain $H(0) \in \mathcal{H}_0$

$$\varphi_1^T Z + \varphi_2^T > 0, Z \in \mathcal{H}_0 \hookrightarrow \mathbb{R} \to \mathbb$$

Robust stability conditions

Theorem

The uncertain linear positive system is asymptotically stable if there exist $\lambda \in \mathbb{R}^n_{++}$, $\varphi_1(\delta), \varphi_2(\delta) \in \mathbb{R}^{n_0}$ and $\gamma > 0$ such that the robust linear program

$$\lambda^{T} A + \varphi_{1}(\delta)^{T} C_{0} + \mathbb{1}_{q}^{T} C_{1} < 0$$

$$\lambda^{T} E_{0} + \varphi_{2}(\delta)^{T} + \varphi_{1}(\delta)^{T} F_{00} + \mathbb{1}_{q}^{T} F_{10} < 0$$

$$\lambda^{T} E_{1} - \gamma \mathbb{1}_{p}^{T} + \varphi_{1}(\delta)^{T} F_{01} + \mathbb{1}_{q}^{T} F_{11} < 0$$
(8)

$$\varphi_1(\delta)^T + \varphi_2(\delta)^T \Delta(\delta) \ge 0 \tag{9}$$

is feasible for all $\delta \in \delta$. Moreover, in such a case, the L_1 -gain of the transfer from $w_1 \to z_1$ is bounded from above by γ .

Robust linear program

Stability analysis and norm computation

▶ Polynomial dependence → Handelman's Theorem (preserve linear program structure)

Examples

Example 1 - Positive time-delay system

Let us consider a positive time-delay system

$$\dot{x}(t) = Ax(t) + Bx(t - h)$$

where A is Metzler and B is nonnnegative.

Linear Fractional Transformation

$$\begin{array}{lcl} \dot{x}(t) & = & Ax(t) + Bw_0(t) \\ z_0(t) & = & x(t) \\ w_0(t) & = & \nabla_h(z_0)(t) \end{array}$$

where ∇_h is the constant delay operator with transfer function e^{-sh} .

Stability conditions

$$\lambda^T A + \varphi^T < 0$$
$$\lambda^T B - \varphi^T < 0$$

for some $\varphi \in \mathbb{R}^n$. Condition equivalent to

$$\lambda^T(A+B) < 0.$$

Example 2 - Positive system with parametric uncertainty (1)

Let us consider the positive uncertain system with constant parametric uncertainty $\delta \in [0,1]$:

$$\dot{x}(t) = (A_0 + \delta A_1 + \delta^2 A_2) x(t) + (E_0 + \delta E_1 + \delta^2 E_2) w_1(t)
z_1(t) = (C_0 + \delta C_1 + \delta^2 C_2) x(t) + (F_0 + \delta F_1 + \delta^2 F_2) w_1(t)$$
(10)

3 states, 2 inputs and 2 outputs

$\varphi_1(\delta)$	$\varphi_2(\delta)$	constraints	computed L_1 -gain	time
$\begin{bmatrix} \varphi_1^0 \\ \varphi_1^1 \delta \\ \varphi_1^1 \delta + \varphi_1^2 \delta^2 \end{bmatrix}$	$egin{array}{c} arphi_2^0 \ arphi_2^0 \ arphi_2^0 + arphi_2^1 \delta \end{array}$	$\begin{array}{c c} \varphi_1^0 \geq 0, \varphi_1^0 + \varphi_2^0 \geq 0 \\ \varphi_1^1 = -\varphi_2^0 \\ \varphi_1^1 = -\varphi_2^0, \varphi_1^2 = -\varphi_2^1 \end{array}$	133.95 133.95 94.167	2.7844s 3.829s 4.2758s

Table: L_1 -gain computation of the transfer $w_1 \rightarrow z_1$ – Exact L_1 -gain: 92.8358

Examples

Example 2 - Positive system with parametric uncertainty (2)

Let us consider the positive uncertain system with constant parametric uncertainty $\delta \in [0, 1]$:

$$\dot{x}(t) = (A_0 + \delta A_1 + \delta^2 A_2) x(t) + (E_0 + \delta E_1 + \delta^2 E_2) w_1(t)
z_1(t) = (C_0 + \delta C_1 + \delta^2 C_2) x(t) + (F_0 + \delta F_1 + \delta^2 F_2) w_1(t)$$
(11)

3 states, 2 inputs and 2 outputs

$\varphi_1(\delta)$	$\varphi_2(\delta)$	constraints	computed L_{∞} -gain	time
$\begin{bmatrix} \varphi_1^0 \\ \varphi_1^1 \delta \\ \varphi_1^1 \delta + \varphi_1^2 \delta^2 \end{bmatrix}$	$\varphi_2^0\\ \varphi_2^0\\ \varphi_2^0+\varphi_2^1\delta$	$\begin{array}{c c} \varphi_1^0 \geq 0, \varphi_1^0 + \varphi_2^0 \geq 0 \\ \varphi_1^1 = -\varphi_2^0 \\ \varphi_1^1 = -\varphi_2^0, \varphi_1^2 = -\varphi_2^1 \end{array}$	86.195 86.195 82.025	0.68989s 1.4629s 1.7509s

Table: L_{∞} -gain computation of the transfer $w_1 \to z_1$ – Exact L_{∞} -gain: 82.0249

Conclusion

Conclusion and Future Works

Examples

Conclusion

- \triangleright Computing the L_1 -gain of positive systems \Leftrightarrow Solving a linear programming problem
- ▶ Computing of the L_{∞} -gain of positive systems \Leftrightarrow Computing the L_1 -gain of positive systems
- Robustness analysis can be done in this framework (possibly nonconservative)
- Possible improvements over the L₂-gain

Stability analysis and norm computation

Future Works

- Controller design (state-feedback, structured, static-output, with bounded coefficients): linear programming problem
- Design of dynamic output feedback ?
- Application to a real process

Examples

Thank you for your attention

Handelman's Theorem

Theorem

Let Δ be a convex polyhedra in \mathbb{R}^N and a family \mathcal{G} of linear functions $q_i(x) = \alpha_i^T x + \beta_i$ such that

$$\Delta = \left\{ x \in \mathbb{R}^N : \ g_i(x) \ge 0 \right\}.$$

Robust stability analysis

Then any polynomial nonnegative over Δ can be rewritten in terms of a nonnegative linear combination of powers of the q_i 's.

Example

- \triangleright p(x) is a polynomial of degree 2 nonnegative on the interval [-1,1]
- ▶ Basis: $q_1(x) = x + 1$ and $q_2(x) = 1 x$
- ▶ The Handelman's Theorem claims that there exist $\tau_i \geq 0, i = 1, \ldots, 5$ such that

$$p(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$$

= $\tau_1 g_1(x) + \tau_2 g_2(x) + \tau_3 g_1(x) g_2(x) + \tau_4 g_1(x)^2 + \tau_5 g_2(x)^2$

